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Abstract

Digital platforms deliver numerous interventions to their users. One of platforms’ main goals is
to estimate the causal effect of these interventions. An ideal way to answer this question is to run a
fully randomized experiment. However, the cost of such experiments is high, making observational
approaches appealing to digital platforms. In this paper, we study the feasibility of using observational
methods in the presence of algorithmic decision-making. Although the setting created by algorithmic
decision-making satisfies the unconfoundedness assumption as the assignment rule is known, the overlap
assumption is often violated because these algorithms induce a mixture of probabilistic and deterministic
intervention assignments. We theoretically show that the violation of overlap can substantially bias the
estimates of the population average treatment effect from observational data. To address this issue, we
propose a novel solution based on machine learning methods used for matrix completion that allows us
to recover the treatment effect estimates if the underlying space of treatment effects is low rank. Using
both synthetic and real data in the context of advertising, we demonstrate the accuracy and targeting
performance of our algorithm. Notably, we find that our algorithm creates substantial value by better
re-allocating units to interventions.
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1 Introduction

Algorithms help digital platforms scale the number of interventions they deliver to their users. One of

the platforms’ main goals is to estimate the causal effect of these interventions. An ideal way to answer

this question is to run a fully randomized experiment. However, the economic cost of such experiments is

high, making alternative approaches based on observational data appealing to digital platforms. Thus, it is

important for these platforms to estimate the causal effects of interventions with their existing observational

data.

Both experimental and observational methods to estimate the causal effect of an intervention rely on a

set of assumptions called strong ignorability of the treatment assignment. Strong ignorability assumption is

a mix of two assumptions: (1) unconfoundedness of the treatment assignment, which states that conditional

on observed covariates, assignment to the treatment is independent of potential outcomes, and (2) overlap

or positivity of the treatment assignment, which assumes that the treatment assignment is probabilistic, that

is, the propensity score of the treatment is a probability strictly between 0 and 1.

What is different in digital platforms is that the unconfoundedness assumption is more plausible than

in most settings. The treatment assignment rule is known as the platform itself delivers the interventions.

However, the challenge in these settings comes from an often-ignored part of the ignorability assumption:

overlap or the requirement for the probabilistic assignment. Although algorithmic decision-making helps

platforms better allocate their interventions, the outputs of these algorithms are largely deterministic, thereby

violating the overlap assumption.

In this paper, we consider a digital platform that seeks to estimate the causal effect of interventions at

the population and individual levels for better decision-making and targeting, using data where interven-

tion assignment is based on algorithms that induce a mixture of probabilistic and deterministic intervention

assignments. A prime managerial example of this context is online advertising, where the decision-maker

wants to estimate population- and individual-level ad effectiveness for better targeting, but running an ex-

periment is too costly. In online advertising, ads are allocated through auctions that are largely deterministic

and induce only partial and local randomization in assignment. Such a context satisfies the unconfounded-

ness assumption because the algorithmic outputs are readily available to the platform but violates the overlap

assumption because of the deterministic assignment employed by the algorithms. Keeping this managerial

example in mind, we seek to study the general problem and answer the following sets of research questions:

1. What are the consequences of overlap violation for estimating causal parameters such as the popu-

lation average treatment effects? Can state-of-the-art causal machine learning methods still estimate

causal parameters under overlap violation?

2. How can we design an algorithm to overcome the challenges posed by the overlap violation? What

assumptions are required for this solution to work?

3. How common is the problem of overlap violation in real application settings? How does the proposed

solution perform in the presence of these challenges? What are the gains from using our algorithm for

decision-making?
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To address these questions, we develop a simple framework that categorizes data into three regions based

on treatment assignment: (1) probabilistic assignment, where the propensity score is between 0 and 1,

(2) deterministic assignment, where the treatment is assigned with probability 1, and (3) deterministic no-

assignment, where the treatment is never assigned (propensity score is 0). Only the probabilistic assignment

region satisfies the overlap assumption. We define Group Average Treatment Effects (GATE) for each

region, allowing for potential differences at the population level.

Our theoretical analysis shows that without overlap, both model-based and model-free state-of-the-art

methods for estimating the Average Treatment Effect (ATE) can only estimate the GATE for the probabilistic

region and fail to estimate the population ATE. Specifically, when assignment probability depends on the

heterogeneous treatment effect, the absence of overlap can lead to sizable differences between the GATE

for the probabilistic region and the population ATE. We highlight the prevalence of this issue in algorithmic

decision-making, demonstrating that even slight connections between heterogeneous treatment effects and

deterministic assignment can cause systematic biases in population ATE estimates.

Once we establish the existence and prevalence of the lack of overlap in observational studies involving

digital platforms and the challenges it poses, we focus on devising a way to estimate Conditional Average

Treatment Effects (CATE) for units with deterministic assignment. We propose a framework that formu-

lates the unidentifiability of CATE for the overlap-violating regions of the data as a missing data problem.

Although we cannot fix this problem with a single study at hand, we can potentially use the information

across studies to help with this missing data problem. In particular, if we have multiple studies with dif-

ferent treatments (e.g., smartwatch ad in one study and mobile health app in another) whose individualized

effects come from a low-rank space, we can use matrix completion methods to impute the CATE for the

overlap-violating regions.

In our algorithm, we set CATE estimates from the overlap-violating regions as question marks in a

matrix and only estimate the CATE for units whose assignment is probabilistic. We then exploit the variation

among those entries in the matrix to complete the matrix for the deterministic regions. The intuition for this

approach is as follows: if there are a few factors that collectively determine CATE for each study, we can

exploit similarities across users and across treatments to identify those factors and impute CATEs for units

that belong to overlap-violating regions. Once we complete the matrix for the formerly unidentified parts,

we can correct the bias in the population ATE estimates.

We use a calibrated simulation in the context of online advertising, where we micro-found the algo-

rithmic ad allocation through advertising auctions. In this simulation, we are interested in measuring ad

effectiveness for a series of ads on a population of users. We first theoretically show that the algorithmic ad

allocation violates the overlap assumption because ads with lower bids will receive a propensity score of 0.

We then demonstrate that the estimates for population ATE under state-of-the-art ATE estimation methods

are largely biased. Notably, we show that our proposed algorithm correctly recovers the ATE for each ad.

Further, we evaluate the targeting performance of our algorithm and show substantial economic gains for

the advertising platform from using our algorithm compared to a series of benchmarks. Together, our results

demonstrate the superior performance of our algorithm compared to the existing benchmarks.

Finally, we conduct an empirical validation exercise based on the data from a leading in-app advertising
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platform in a large Asian country. We particularly focus on this platform due to its use of extensive ran-

domization in ad allocation, which provides us with a ground-truth benchmark to validate the assumptions

needed for our algorithm and evaluate the performance of our model. We first define an underlying CATE

matrix for this application and show that this matrix is low-rank. We then introduce a counterfactual setting

wherein an ad allocation algorithm is used to demonstrate how a typical allocation mechanism can lead to

overlap violation. Interestingly, we find that the extent of the overlap violation is so severe that the GATE

for the probabilistic region has the opposite sign from the population ATE. Despite this large discrepancy,

we show that our algorithm can still recover the true ATE using the variation across ads. We further demon-

strate the practical gains from using our algorithm for targeting and show substantial gains compared to the

benchmarks. Together, our calibrated simulation and empirical application provide strong evidence for the

performance of our model and the practical value it creates for managers and decision-makers.

In summary, our paper makes several contributions to the literature. Methodologically, we present a

comprehensive study of the overlap assumption and theoretically characterize the context in digital plat-

forms that use algorithmic decision-making. In particular, we propose a novel machine learning solution

that views the identification challenge as a missing data problem and combines heterogeneous treatment

effect estimation with matrix completion to recover the treatment effects. From a substantive and practi-

cal viewpoint, we identify an important challenge for digital platforms that employ algorithmic decision-

making. While most of the applied causal inference literature is focused on satisfying unconfoundedness

using state-of-the-art causal machine learning methods, we show that the fundamental problem in digital

platforms is, in fact, the overlap violation. We further discuss empirical contexts where this problem may

arise and demonstrate the value of our algorithm through both synthetic experiments and real field data, as

it allows for better targeting of interventions. Overall, our proposed algorithm is fairly general and can be

applied to many contexts, particularly in digital settings where platforms deliver numerous interventions that

have common factors and satisfy the low-rank requirements. Thus, we expect our framework to be valuable

for platforms in utilizing their existing observational data and researchers who access the data from such

platforms.

2 Related Literature

Broadly, our paper relates to the causal inference literature that aims to estimate treatment effects (Neyman

1923, Imbens and Rubin 2015). Following the influential paper by (Rosenbaum and Rubin 1983), much of

this literature focuses on a set of assumptions known as the strong ignorability of the treatment assignment,

which is a combination of two assumptions: unconfoundedness and overlap. While the unconfoundedness

assumption has received considerable attention in the literature, the overlap assumption has often been

viewed as a more straightforward assumption to be satisfied in real settings. As such, less attention has been

paid to the overlap assumption in prior studies on causal inference, with a few notable exceptions that focus

on various aspects of the overlap assumption, such as studying sample trimming strategies (Crump et al.

2009, Ma and Wang 2020, D’Amour et al. 2021), extra assumptions that help recover causal estimands for

overlap-violating regions (Nethery et al. 2019), and quantifying the uncertainty in overlap-violating regions

of observational data (Jesson et al. 2020). Motivated by the context of algorithmic decision-making in digital
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platforms and the prevalent violation of this assumption in such contexts, we study the overlap assumption

– how it arises and what theoretical implications it has for treatment effect estimates. We contribute to this

literature by characterizing the bias induced by the lack of overlap and identifying cases where the lack of

overlap can be detrimental in the sense that conventional solutions such as using more competent causal

machine learning models and sample trimming do not solve the problem. We further add to this literature

by proposing a machine learning approach based on matrix completion that imposes low-rank assumptions

on the treatment effects space to help correct this bias.

Second, our paper relates to the literature on the growing intersection of machine learning and causal

inference. In recent years, a series of papers combined the insights from the causal inference literature with

the flexibility and scalability of machine learning models in learning patterns from data to develop new

methods to estimate causal estimands such as average treatment effect (Belloni et al. 2014, Chernozhukov

et al. 2018a, Athey et al. 2018) or conditional average treatment effect (Shalit et al. 2017, Athey et al. 2019,

Chernozhukov et al. 2018b, Nie and Wager 2021). In marketing, many recent papers used these methods

in a variety of application domains such as personalized promotions (Simester et al. 2020), customer re-

lationship management (Ascarza 2018), personalized free-trial (Yoganarasimhan et al. 2022), ad targeting

and sequencing (Rafieian and Yoganarasimhan 2021, Rafieian 2023), video advertising format (Rafieian

et al. 2023), and personalized versioning (Goli et al. 2022b). We add to this literature in two separate ways.

First, we theoretically characterize the performance of causal machine learning methods when the over-

lap assumption is violated. Second, we propose a machine learning algorithm that exploits the similarities

between the treatments in the treatment space and overcomes the issue of overlap violation under certain

assumptions.

Third, our paper relates to the literature on matrix completion. Although the popularity of these models

stems from the Netflix Prize for movie recommendation (Bennett et al. 2007), the application of matrix

completion models is much broader to any setting where the underlying structure of matrix with missing

data is low-rank (Mazumder et al. 2010). The relevance and success of matrix completion models motivated

a large stream of theoretical work that establish the main theoretical guarantees of these models (Candès and

Recht 2009, Candès and Tao 2010, Recht 2011, Gross 2011, Negahban and Wainwright 2011). Recent work

has focused on the intersection of matrix completion and causal inference and found useful applications

(Kallus et al. 2018, Athey et al. 2021, Agarwal et al. 2021). Our work adds to this literature by formulating

the unidentifiability of the overlap-violating parts of data as a missing data problem and applying matrix

completion models to exploit cross-study variation and recover the true causal parameters. Specifically, we

bring the recent advancements in CATE estimation to the matrix completion problem to help utilize the rich

information in the covariate space.

Finally, our paper relates to the stream of literature on advertising effectiveness and measurement (Lewis

et al. 2011, Johnson et al. 2017a,b, Gordon et al. 2019, 2022). In particular, a stream of work in this

domain has focused on the measurement problems even in the presence of randomized controlled trials,

such as statistical power issues (Lewis and Rao 2015, Johnson et al. 2017b) or the compliance issue (Johnson

et al. 2017a). Another series of papers have investigated the possibility of estimating true ad effectiveness

measures by using observational methods (Lewis et al. 2011, Gordon et al. 2019, 2022). In particular, a
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handful of studies in the prior literature have used the variation across studies as a useful source of variation

for the estimation task at hand (Zantedeschi et al. 2017, Gordon et al. 2023). Our work extends this body of

work in several ways. First, we bring the possibility of overlap violation as an explanation largely missing

from the prior literature for the inability of observational methods to recover ad effectiveness. In particular,

we develop a micro-founded model of algorithmic ad allocation and show–through a formal lemma and a

series of simulations–that numerous user-ad pairs have practically 0 propensity scores, thereby violating the

overlap assumption. Second, our work differs from these papers in proposing an algorithmic solution to the

problem of overlap violation that allows managers to implement personalized targeting of interventions.

3 Overlap Violation in Algorithmic Decision-making

Digital platforms often rely on algorithms to deliver interventions. This approach enables scalable delivery

while ensuring that the algorithm serves the platform’s objectives. However, because these algorithms are

designed to optimize the platform’s objectives, they typically favor exploitation over exploration, leading

to limited randomization at the local level. For example, if an ad has low expected value for a given user,

the algorithm may never allow it to be shown to that user, due to persistent competitive dynamics or re-

serve pricing. As a result, not all units receive probabilistic intervention assignments, thereby violating a

fundamental requirement of causal inference methods (Imbens and Rubin 2015).

Cases involving a mix of probabilistic and deterministic assignment are common in algorithmic decision-

making. Broadly, we identify two major classes of settings, distinguished by the degree of platform control

over the assignment policy, and discuss how algorithms generate partially deterministic and partially proba-

bilistic allocation patterns in each.

• Cases with the platform’s full control over the assignment policy: The first class is in settings where the

platform has full control over the assignment policy. In these cases, algorithmic scores determine the

treatment assignment. The intervention with the highest algorithmic score is selected. This naturally

creates a setting where sizable portions of the population are assigned to deterministic and probabilistic

regions. The reason for the existence of probabilistic assignment in these settings is the residual uncer-

tainty in the posterior distribution of these algorithmic scores. Figure 1a illustrates this point with a case

where a threshold rule is used to assign individuals to an intervention: only if the posterior distribution

of the algorithmic score is entirely above or below the cutoff shown by the dashed line, the assignment

becomes deterministic. Practical examples of such settings include promotion assignment (e.g., Uber’s

promotion for future rides) and push notifications (e.g., Fitbit’s notification on body activity). In these

settings, uncertainty in algorithmic scores creates exogenous variation near the decision threshold. This

variation is conceptually analogous to that in Regression Discontinuity designs, where units close to the

threshold form a natural experiment. Such variation has been leveraged in algorithmic decision-making

contexts to identify Local Average Treatment Effects (LATE) of various interventions (Shi et al. 2022,

Narayanan and Kalyanam 2015).

• Cases with the platform’s partial control over the assignment policy: The second class includes settings

where the platform determines the allocation rule but does not fully control the final assignment because

other agents influence the outcome. Examples include an advertising platform selecting which ad to
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Figure 1. Probabilistic and deterministic assignment regions under algorithmic decision-making

show, a social network curating a news feed from user-generated content, or a platform ranking products

for a search query. In such cases, the platform builds an algorithm that incorporates agent inputs—such

as bids, content, or availability—into the assignment process. Consequently, the platform only partially

controls the assignment. These settings generate both deterministic and probabilistic regions. The source

of randomization in these settings stems from stochastic events, such as when advertisers are unavailable

due to budget exhaustion or pacing strategies, or listings being fully booked and thus excluded from

rankings. Importantly, this randomness is local and gives rise to deterministic assignment in parts of

the space. Figure 1b illustrates how allocation can be deterministic or probabilistic in the context of

online advertising auctions. Conceptually, an ad is shown if its bid exceeds the highest bid among all

competing ads.1 The highest competing bid is a stochastic quantity, influenced by factors such as budget

exhaustion, pacing policies, and the auctioneer’s use of randomization for computational or exploratory

purposes (Ghili et al. 2025). As such, this maximum bid follows a distribution with support [b, b̄]. If the

ad’s bid exceeds b̄ or falls below b, its assignment becomes deterministic.

Given the prevalence of such local randomization patterns in contexts with algorithmic decision-making,

we aim to study the challenges it poses for estimating causal parameters and propose potential solutions.

We note that more interesting applications arise in the second class of problems, since platforms in the

first class can always implement simple design-based solutions that induce small-scale randomization in

interventions. To focus more sharply on real-world applications, we use online advertising auctions as

the primary application case throughout the paper, which belongs to the second class of problems. This

is also due to the centrality of this problem to marketing and the established complexity of estimating ad

effectiveness because of identification issues caused by algorithmic ad allocation (Gordon et al. 2019, 2022).

As such, we consider an advertising platform that serves ads through auctions in our main simulation and

empirical exercises. However, later in the paper, we show that our proposed method is more general and can

be applied to other domains with algorithmic decision-making.
1While real-world auctions often consider additional factors like quality scores, we focus on bids here for ease of exposition.
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4 Theoretical Analysis

4.1 Problem Definition

We first formally define our problem. Consider a general case where a digital platform delivers interventions

to observation units. The observation unit is often a user in digital platforms. When an observation unit is

available to receive the intervention, the platform chooses from the set of all interventions, which is denoted

by W in our problem. For example, this set can be the list of different ads to show to the user. For

observation i, let Wi denote the intervention delivered to the user, and Xi denote the vector of observable

characteristics from the super set X . As customary in digital platforms, the vector of characteristics Xi is

often high-dimensional with detailed information about the user such as demographics and past user history,

as well as contextual factors such as the timestamp of the observation.

In order to determine which intervention to deliver in each observation, digital platforms generally

use an algorithm that scalably uses the feature vector Xi and returns an intervention that optimizes the

platform’s objective. For any intervention w ∈ W , we characterize this algorithmic policy as a function

πw : X → [0, 1], where πw(Xi) determines the probability that the platform chooses intervention w in

observation i. The function πw is the same as the propensity score function in the causal inference literature.

Digital platforms often have direct access to this function.

Once the intervention is delivered, the platform collects the outcome of interest Yi for observation i.

This outcome is defined based on the problem under the study. For example, this outcome can be clicks

or conversion in the advertising context. Following the potential outcomes framework, we define Yi(w) for

each w ∈ W as the potential outcome we would have observed under intervention w. For simplicity and

greater consistency with the causal inference literature, we focus our analysis on the binary case with one

treatment and one control group.2 As such, Wi = 1 means that observation i has received the treatment,

whereas Wi = 0 refers to the case where observation i has received the control. Hence, for each observation

i, there are two potential outcomes Yi(0) and Yi(1).

With this notation in place, we now define two causal estimands that researchers and practitioners often

want to estimate. The first causal estimand is Average Treatment Effect (ATE) that we denote by τ∗ and

define it as follows:

τ∗ = E[Yi(1)− Yi(0)], (1)

where the expectation is taken over the entire population. The second causal estimand, Conditional Average

Treatment Effect (CATE), is the same as ATE conditional on a certain value of the covariate vector. We

denote CATE as τ∗(x) and define it as follows:

τ∗(x) = E[Yi(1)− Yi(0) | Xi = x]. (2)

The prior literature on causal inference has proposed a wide variety of methods to estimate ATE and

CATE (Imbens and Rubin 2015). These methods require a set of assumptions known as (1) Stable Unit

Treatment Value Assumption (SUTVA), and (2) Strong Ignorability of Treatment Assignment. SUTVA states
2The results are easily generalizable to the case with multiple treatment levels.
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that there is a single version of each treatment, and the units do not interfere with each other. In digital

settings where treatments are well-defined with a single version and a unit’s treatment status, and action

is isolated in the sense that it does not change the treatment status of other units, SUTVA would be more

plausible. In this paper, we consider the cases where SUTVA holds to exclusively focus on cases where the

ignorability assumption is violated.3

The second set of assumptions is known as Strong Ignorability assumption, which is defined in the

seminal paper by Rosenbaum and Rubin (1983). The assignment to treatment is strongly ignorable given

the observed covariates Xi, if we have:

• Unconfoundedness: The potential outcomes are independent of the treatment assignment conditional on

observed covariates:

{Yi(1), Yi(0)} ⊥⊥Wi | Xi, (3)

which is known as the unconfoundedness assumption and referred to with other names such as selection

on observables, conditional exogeneity, etc.

• Overlap: The assignment to the treatment is probabilistic, that is:

0 < Pr(Wi = 1 | Xi) < 1, (4)

where Pr(Wi = 1 | Xi) is the same as the propensity score when w = 1, that is, π(Xi).4 This assump-

tion is often referred to as the overlap or positivity assumption and guarantees that the assignment to

the treatment is not deterministic. Intuitively, this assumption ensures that the distribution of covariates

under treatment fully overlaps with that of covariates under control.

The strong ignorability assumption serves as the foundation for studies of causal inference. The most com-

mon challenge in observational studies is often the unobservability of the assignment rule, which results

in the confoundedness of the treatment. That is, there is an unobserved variable Zi that affects both the

treatment assignment and the outcome, thereby resulting in selection bias in the estimates of the average

treatment effect. For example, a researcher may never observe why a doctor prescribes a medication as it is

a function of factors hidden to the researcher.

The key difference in digital platforms that employ algorithmic decision-making is that the assignment

rule is often fully observable. That is, the platform can easily store the Xi used for algorithmic decision-

making and the output of the algorithm π(Xi), which is shown to be sufficient to satisfy the unconfound-

edness assumption (Rosenbaum and Rubin 1983). Hence, observational studies on digital platforms do not

suffer from the well-known confoundedness or endogeneity problem since there is no selection on unobserv-

ables. Using the medical example, the researcher would exactly know what went into the doctor’s decision.

What makes these observational studies challenging is the commonly ignored part of the strong ignora-

bility assumption, which requires the treatment assignment to be probabilistic. Although the probabilistic

assignment is plausible in more traditional studies without algorithmic decision-making in the background,
3A series of recent studies show cases where SUTVA is violated in digital settings. Please see Goli et al. (2022a) for a great

summary of these cases.
4For brevity, instead of π1(Xi), we use π(Xi).
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algorithms used by digital platforms to deliver interventions are largely deterministic. That is, π(Xi) can be

equal to 0 or 1 depending on Xi.

Our goal in this paper is to study the consequences of the lack of overlap in observational studies on

digital platforms. As such, we can formally define the problem as follows:

Problem 1. Consider a digital platform that uses data D = {Yi,Wi, Xi, π(Xi)}. The main estimands the

platform wants to estimate are the average treatment effect (ATE) for the entire population and conditional

average treatment effects (CATE) for each value of the vector of covariates.

Our primary goals in this section are to (1) quantify the magnitude of bias due to this overlap violation,

(2) identify the link between this bias and the algorithm used by the platform to shed light on the prevalence

of this problem in real-world applications.

4.2 Identification Challenge

In this section, we theoretically analyze how the lack of overlap can lead to biased estimates of the average

treatment effect (ATE). We present a simple framework to illustrate how the violation of overlap poses

challenge for estimating the population ATE. To do so, we first introduce a new notation that captures the

difference between different parts of the covariate space. In particular, we focus on the group average

treatment effect (GATE) for three separate groups of observation units as shown in Figure 2:

• Probabilistic assignment region: For observations where 0 < π(Xi) < 1, we define τr = E[Yi(1) −
Yi(0) | 0 < π(Xi) < 1], which is the average treatment effect for the observations that have a proba-

bilistic assignment. We denote the fraction of such observations in our data by αr.

• Deterministic no-assignment region: For observations where π(Xi) = 0, we define τ0 = E[Yi(1) −
Yi(0) | π(Xi) = 0], which is the average treatment effect for observations that certainly receive the

control. We denote the fraction of such observations in our data by α0.

• Deterministic assignment region: For observations where π(Xi) = 1, we define τ1 = E[Yi(1)− Yi(0) |
π(Xi) = 1], which is the average treatment effect for observations that certainly receive the treatment.

We denote the fraction of such observations in our data by α1.

Now, we can define the average treatment effect as τ∗ = αrτr+α0τ0+α1τ1, where αr+α0+α1 = 1. This

decomposition allows us to highlight where the deterministic assignment creates a problem. Suppose that

the digital platform wants to use data D to estimate τ1. The problem is that for this slice of the population,
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the treatment variable is perfectly correlated with the propensity score, that is, Wi = π(Xi) = 1. The same

problem is present in identifying τ0, since there is no residual variation in treatment. Thus, we can write the

following lemma:

Lemma 1. The group average treatment effects τ1 and τ0 are unidentifiable given data D.

4.3 Bias Analysis

In light of Lemma 1, the only identifiable piece of τ∗ is τr. We now want to see how this identification

problem manifests itself in both model-based and model-free approaches to estimate causal estimands. One

argument is that state-of-the-art ATE estimation methods that combine flexible machine learning models

with causal inference can capture very complex treatment assignment mechanisms and address potential

selection issues.5 A few prominent examples of these advanced methods are Double Machine Learning

(Chernozhukov et al. 2018a) and Approximate Residual Balancing (Athey et al. 2018). Inspired by these

developments, Gordon et al. (2022) test this possibility in the context of online advertising and consider

both Double Machine Learning (DML) and Propensity Score Matching (PSM) methods as model-based and

model-free benchmarks, respectively. The following proposition shows that state-of-the-art model-based

and model-free approaches could only estimate the identifiable piece τr and fail to estimate the population

ATE τ∗:

Proposition 1. Suppose there is a digital platform that has access to data D = {Yi,Wi, Xi, π(Xi)}, where

π(Xi) is known, but takes values 0 and 1 for parts of the population. Let τ̂DML and τ̂IPS denote the ATE

estimate based on Double Machine Learning and Inverse Propensity Scoring estimators, respectively. Both

these estimates converge to τr in probability, that is, τ̂DML
p→ τr and τ̂IPS

p→ τr.

Proof. See Web Appendix B.1.

Lemma 1 and Proposition 1 highlight an important identification problem for state-of-the-art ATE es-

timation models that cannot be fixed with higher expressiveness and complexity of the machinery used in

these models. The bright side, however, is that these methods are guaranteed to estimate the treatment effects

for the probabilistic region, thereby allowing researchers to precisely set the scope of their interpretations.

This is something we use later when developing our proposed solution to this problem.

Lastly, a fundamental question is whether our resulting estimates based on the state-of-the-art ap-

proaches are far from the true population ATE τ∗, and if so, whether this is consequential for decision-

making. We can characterize the difference between these estimates from the true population ATE as fol-

lows:

|τ∗ − τ̂ | p→ |α0(τ0 − τr) + α1(τ1 − τr)|. (5)

This equation highlights the fact that if the treatment effects for the deterministic regions are the same as

the treatment effect for the probabilistic region, there will be no difference between τr and τ∗. However,

it is easy to imagine scenarios where the difference in τ1, τ0, and τr creates a substantial difference in
5See a summary of state-of-the-art model-based and model-free approaches to estimate treatment effects in Web Appendix A.
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estimates of the average treatment effect. In fact, for any constant c, we can find τ0 and τ1 such that

|α0(τ0 − τr) + α1(τ1 − τr)| = c, which implies that we can have any magnitude for this difference. In the

rest of this paper, we present application cases that show in which cases this difference is large and to what

extent it leads to economic losses for managers who make decisions based on these estimates.

4.4 Practical Relevance

As discussed earlier, the difference between the identifiable piece τr and the population ATE τ∗ can be

arbitrarily large. An important question is whether this is just a theoretical possibility that is not practically

important. In other words, do we expect the difference |α0(τ0 − τr) + α1(τ1 − τr)| to be large in real

settings? Part of the rationale for the trimming approaches that are widely used in the literature is that τ0
and τ1 are not different from τr. Here we ask the following question: is this homogeneity assumption (i.e.,

τ0 = τr = τ1) correct in digital platforms?

Intuitively, to the extent that π(x) is a function of τ∗(x), we expect τ0 and τ1 to be different from τr.

The following proposition formalizes this insight:

Proposition 2. Let τ(Xi) denote the CATE for observation unit i. We have:

1. If τ(Xi) and belonging to the deterministic assignment region (i.e., 1(π(Xi) = 1) are positively

correlated, then we have τ1 ≥ τ∗.

2. If τ(Xi) and belonging to the deterministic no-assignment region (i.e., 1(π(Xi) = 0) are negatively

correlated, then we have τ0 ≤ τ∗.

Proof. See Web Appendix B.2.

Proposition 2 is important because it shows that even a small correlation can link to a violation of

τ0 ̸= τr ̸= τ1. To see how commonly the conditions of Proposition 2 are satisfied in settings with algorithmic

decision-making, we revisit cases discussed in Figure 1. In settings where the platform uses algorithmic

scores to assign interventions to units as in Figure 1a, it is likely that algorithmic scores are often positively

correlated with CATE, as the outcome of interest for CATE is likely used as part of the algorithm’s objective.

Similarly, in settings with auctions as in Figure 1b, a correlation between bids and CATE across units leads

to conditions outlined in Proposition 2. Economically, we expect this correlation because an ad’s valuation

for an item is the value it receives from winning that item (exposure) compared to not winning that item (no

exposure), which is the same as its CATE for that item.

Examining the canonical advertising effectiveness measurement problem through the lens of Proposition

2 offers important insights. In this problem, the goal is to use observational methods to measure the average

treatment effect of digital ads on users (Gordon et al. 2019, 2022). Digital ads are sold through auctions,

where advertisers place bids per impression and win only when their submitted bid is the highest among all

bidders. As discussed earlier, the advertiser’s submitted bid per impression for a user is a function of the

CATE of that ad for the user (Waisman et al. 2025). The auction setting implies that an ad may never reach

certain users if their CATE is too low, since other advertisers will always outbid it. This results in a form

of deterministic no-assignment: some users in the control condition could never have seen the ad because
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of their low valuation for the advertiser. Therefore, there will be a negative correlation between CATEs and

belonging to the deterministic no-assignment region, which can lead to an over-estimation of the ATE using

state-of-the-art observational methods. Later in §6, we micro-found the ad allocation process to study the

canonical advertising effectiveness measurement problem and illustrate how the issue of overlap violation

could severely bias the treatment effect estimates.

5 Proposed Algorithm

In the previous section, we presented the challenge digital platforms face due to the lack of overlap in ob-

servational studies. The problem stems from the presence of deterministic assignment regions in the context

of algorithmic decision-making, when using the data of a single intervention. For example, as discussed

in the previous section, observational methods lead to biased estimates of advertising effectiveness, using

the data of a single ad campaign. However, the presence of multiple ad campaigns in the platform context

suggests the possibility of transferring information between campaigns. Motivated by the availability of data

from other interventions in platform settings, in this section, we explicitly state our assumptions and data

requirements and propose a novel solution based on machine learning methods to overcome the challenge

posed by the overlap violation.

5.1 Problem Definition: Overlap Violation as a Missing Data Problem

As discussed earlier, the fundamental problem with the deterministic assignment is one of identification. In

light of Lemma 1, we know that with the current set of assumptions, the parameters τ1 and τ0 cannot be

identified because there is no variation in the treatment variable when accounting for the propensity score.

In general, we can write the conditional average treatment effect as follows:

τ∗(x) = E[Yi(1)− Yi(0) | Xi = x] = µ1(Xi)− µ0(Xi), (6)

where µw(x) is the population function for potential outcomes conditional on x when assigned to treatment

w. From a learning standpoint, if one of the two treatment states could never have been generated in the data,

no model can estimate the corresponding µ function. For example, if a unit with covariates Xi could never

have received the treatment, we have no observation in our data to estimate µ1(Xi). As such, the problem

caused by the lack of overlap is one of missing data. That is, for a single treatment, the vector of CATE

estimates has missing values for observations in the deterministic regions. Figure 3 visualizes this insight,

where the CATE estimates are question marks for observations where the overlap assumption is violated.

We now turn to the question of what variation would allow us to impute these question marks. From

our earlier results, we know that with only the data of a single treatment, it is not possible to identify these

question marks. However, we argue that having the data on a set of other treatments for the same set of

observation units (e.g., users) can potentially help. That is, instead of exploiting the within-study variation,

we can exploit between-study variation. Such a setting is common among digital platforms that deliver

different treatments at a large scale. Motivated by this insight, we define the problem of the digital platform

as follows:
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Figure 3. An illustration of the missing data problem due to the overlap violation.

Problem 2. Consider a digital platform that has data from multiple studies indexed by j from 1 to J . Each

study involves a binary treatment variable denoted by W (j), where the value for the ith observation is either

0 or 1, i.e., W (j)
i ∈ {0, 1}. For each study j, the platform has the data D(j) = {Y (j)

i ,W
(j)
i , Xi, π

(j)(Xi)},
which collectively makes the data DT =

⋃J
j=1D(j). The platform’s goal is to recover the following matrix:

T =


τ (1)(X1) τ (2)(X1) . . . τ (J)(X1)

τ (1)(X2) τ (2)(X2) . . . τ (J)(X2)
...

...
. . .

...

τ (1)(XN ) τ (2)(XN ) . . . τ (J)(XN )

 , (7)

where τ (j)(Xi) is the CATE from the treatment in study j for observation unit i. Formally, we can define

this estimand as follows:

τ (j)(Xi) = E[Y
(j)
i (1)− Y

(j)
i (0) | Xi]. (8)

If the digital platform achieves the objective in Problem 2, it can recover the average treatment effect for

the treatment in each study.

Data Requirements: Problem 2 highlights a few important data requirements. First, treatments in different

studies can be different. For example, the treatment in study j can be an ad for a smartwatch and the

treatment in study k can be an ad for a mobile health app. One could imagine this as different interventions

the platform made over time, such as different ad campaigns in an advertising platform, or different in-app

interventions (e.g., free coins) in a gaming app. Second, for each study, we need to have the same set

of observation units that form rows in the matrix in Equation (7). As such, one user can be assigned to

multiple treatments (e.g., both the smartwatch ad and mobile health app ad in the example above). Lastly,

we require having data on multiple interventions that induce a mixture of probabilistic and deterministic

assignment patterns. It is important to stress that this requirement is not excessive, as platforms often

run numerous different treatments on their users that induce a mixture of probabilistic and deterministic

assignment regions.
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5.2 Algorithm

Before we present our algorithm, we need to define some model preliminaries. As mentioned earlier, the

goal of our algorithm is to estimate CATE for all the elements in the matrix despite the overlap violation. To

do so, we first need to know which elements we cannot estimate with existing methods for CATE estimation.

Therefore, we define the propensity matrix as follows:

Π =


π(1)(X1) π(2)(X1) . . . π(J)(X1)

π(1)(X2) π(2)(X2) . . . π(J)(X2)
...

...
. . .

...

π(1)(XN ) π(2)(XN ) . . . π(J)(XN )

 , (9)

where each element Πi,j denotes the propensity score for the treatment in study j for unit i, i.e., Πi,j =

π(j)(Xi) = Pr(W
(j)
i = 1 | Xi). As such, the deterministic regions for each treatment are defined as rows

where the propensity score is either 0 or 1. We know that the CATE is unidentified for these units. Thus,

we define a feasibility matrix F that takes value 1 only when the assignment is probabilistic; that is, the

propensity score is strictly between 0 and 1. As such, we can write each element of this matrix as follows:

F =


1(0 < π(1)(X1) < 1) 1(0 < π(2)(X1) < 1) . . . 1(0 < π(J)(X1) < 1)

1(0 < π(1)(X2) < 1) 1(0 < π(2)(X2) < 1) . . . 1(0 < π(J)(X2) < 1)
...

...
. . .

...

1(0 < π(1)(XN ) < 1) 1(0 < π(2)(XN ) < 1) . . . 1(0 < π(J)(XN ) < 1)

 . (10)

The feasibility matrix F determines the scope of our CATE estimation. That is, if for treatment j in unit i,

we have Fi,j = 0, Lemma 1 implies that we cannot identify τ (j)(Xi). However, if Fi,j = 1, we can use any

consistent CATE estimators to estimate τ (j)(Xi), because π(j)(Xi) is probabilistic and the setting satisfies

the unconfoundedness assumption. Therefore, F determines what is identifiable and transforms the problem

in Problem 2 into a matrix completion problem, where we have an estimated CATE matrix T̂ incomplete and

each element [i, j] is defined as follows:

T̂ incomplete
i,j =

τ̂ (j)(Xi; θ̂j) ifFi,j = 1

? ifFi,j = 0
(11)

As shown in Equation (A.31), F determines the question marks in our matrix completion task. We now

have an incomplete matrix T̂ incomplete, where the incomplete elements are the overlap-violating regions. If

the underlying matrix T is low-rank, we can use existing matrix decomposition techniques to impute the

question marks. In our algorithm, we use the SoftImpute algorithm proposed by Mazumder et al. (2010)

as the algorithm we use for matrix completion, which combines Singular Value Decomposition (SVD) with

soft thresholding to obtain a low-rank approximation of the incomplete matrix. This procedure exploits the

similarities in the joint space of units and treatments. We present more details on the SoftImpute algorithm

in Web Appendix C.1. It is worth noting that we use SoftImpute because of its computational performance,
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but a researcher can use different algorithms depending on the features of the problem (e.g., missingness

pattern). One could perform a generic model selection procedure using validation data to select that best-

performing matrix completion model from the host of methods available (Koren et al. 2021). Once we

complete the matrix, we denote it by T̂ complete. Algorithm 1 presents the details of our proposed approach.

Algorithm 1 Matrix Completion for CATE Estimation
Input: DT ▷ From Problem 2
Output: T̂ complete

1: F ← 1(0 < Π < 1)
2: for j = 1→ J do
3: τ̂ (j) ← learnCATE(Y (j)

i ,W
(j)
i , {Xi, π

(j)(Xi)}) ▷ Can be any CATE learner
4: for i = 1→ N do
5: T̂ incomplete

i,j ← τ̂ (j)(Xi; θ̂j)
6: if Fi,j = 0 then
7: T̂ incomplete

i,j ←?
8: end if
9: end for

10: end for
11: T̂ complete ← Complete(T̂ incomplete)

The output of this algorithm is a complete matrix T̂ complete where all the elements are imputed. This

complete CATE matrix can then be used to estimate the ATE from the data. For each treatment in study j,

we can recover the average treatment effect as follows:

τ̂ (j) =
1

N

N∑
i=1

T̂ complete
i,j . (12)

If the matrix T is low-rank, τ̂ (j) is a bias-corrected version of the ATE for treatment j. Further, we can use

the imputed CATE estimates for targeting, as shown later in §6.3.3 and §7.4.2.

Two important questions about the proposed algorithm is how to select the optimal rank of the matrix,

and how to quantify uncertainty around the estimates. We discuss both below:

Validation Procedure for Optimal Rank Selection: Any matrix completion method has a set of tuning

parameters that control the rank of the final imputed matrix. In the SoftImpute algorithm we use, there are

two key parameters: (1) the regularization parameter λ, which controls the rank of the estimated matrix by

regularizing its nuclear norm, as discussed in Web Appendix C.1, and (2) the maximum rank, which is the

maximum allowable rank of the matrix. In many settings, researchers either use domain knowledge to set

the maximum rank or automatically set it as the number of columns.

To tune λ, we use a validation procedure to obtain the best-performing value by taking the following

steps. We first build a grid of candidate λ values. To select the maximum λ in the grid, we use the highest

singular value of the matrix T̂ incomplete
i,j when the missing entries are replaced with 0s. Second, for model

selection, we split the observed entries into training and validation sets, holding out an α fraction of all

observed entries in the validation set. We train models based on different values of λ in our grid and select
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the one with the best performance on the validation set. Importantly, this validation procedure also helps

verify the validity of the low-rank assumption. For example, if the best-performing matrix has a high rank,

we take that as evidence that the low-rank assumption may not be appropriate for the problem. We stress that

even in this case, the algorithm still acts as a bias-reduction tool and performs no worse than the conventional

method described in §4.3. In Web Appendix C.2, we provide more details on the validation procedure for

the SoftImpute algorithm.

Uncertainty Quantification: The presence of noisy entries and missingness introduce uncertainty in the

imputed entries of the matrix. Quantifying uncertainty has been a long-standing challenge in the matrix

completion literature, and only recently have researchers developed tools to address it analytically (Chen

et al. 2019, Zhao and Udell 2020, Agarwal et al. 2021, Gui et al. 2023). However, these asymptotic theories

often make strong assumptions about the missingness patterns and only apply to a specific class of matrix

completion methods. As such, we use re-sampling methods to account for the statistical fluctuations in

the imputed matrix, similar in spirit to the approach proposed in Athey et al. (2021). In particular, we

leverage the uncertainty in the CATE estimates from the first stage, resample these parameters from their

estimated distribution, construct the incomplete matrix, and then complete it using Algorithm 1. Repeating

this process multiple times allows us to build confidence intervals for any imputed entry T̂ complete
i,j , as well

as the column-wise average τ̂ (j) that recovers the ATE. We present further details on this procedure in Web

Appendix C.3.

5.3 Assumptions and Identification

We now discuss the assumptions we need for the matrix completion approach to impute the missing entries in

the CATE matrix. At a high level, our identification claim is that for each individual in an overlap-violating

region (Fi,j = 0), if we have enough cross-study variation, we can exploit the similarities in the data to

impute the conditional average treatment effect for that individual. The following example helps illustrate

the intuition behind our identification. Suppose that the treatment assignment in study j is deterministic

for user i. As such, the CATE for this entry (τ (j)i ) cannot be identified using the data for study j. For

each missing entry (i, j), there are some neighboring individuals (rows) i′ in the same study (column) and

neighboring studies (columns) j′ in the same row that are non-missing. Hence, the ability of the algorithm to

impute the missing entry depends on whether the information in the sub-matrix containing these neighboring

individuals (rows) and studies (columns) can correctly impute the missing entry. Therefore, for this method

to work, we need a systematic way to capture the similarities in the space of treatments. This is why we use

a matrix completion approach that has been widely used for collaborative filtering.

In our setting, we have an incomplete and noisy version of the true CATE matrix. The entries are noisy

because the estimated CATE will have some errors. The identification task at hand is to identify the complete

CATE matrix and estimate ATEs. To perform this task with standard matrix completion algorithms, we need

assumptions on (1) the rank of the matrix, (2) the missingness pattern6, and (3) noise in the observed entries.

In the following parts, we present details on each assumption and discuss what they intuitively mean, when
6We use the missingness pattern interchangeably with the overlap violation, as we treat the entries with overlap violation as

missing in our solution concept.
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they are satisfied, and how we can test them.

5.3.1 Low Rank CATE Matrix

The fundamental assumption matrix completion methods require is the low-rank assumption, presented as

follows:

Assumption 1. The underlying CATE matrix T is low-rank; that is, for R ≪ min(N, J), there exist two

matrices PN×R and QJ×R such that T = PQT .

At a very high level, this assumption suggests that user responses exhibit common patterns across differ-

ent treatments. Theoretically, the low-rank assumption is what guarantees the possibility of fully recovering

a matrix from only a fraction of its entries using convex optimization (Candès and Recht 2009). A more

practical interpretation of the assumption is that the original matrix can be well-approximated by a low-

rank matrix. In this sense, the low-rank assumption can be viewed less as an assumption and more as a

hyperparameter that can be optimally chosen in a data-driven manner.

More specifically, Assumption 1 implies that CATE values across studies come from a linear combina-

tion of a few factors that are defined at the individual level. In that sense, this assumption is close to those

commonly made in the structural economics literature that imposes a micro-foundation that allows only a

few factors to govern user behavior. For example, in promotional treatments, we expect a few structural

parameters to determine most of the treatment effects, such as users’ price sensitivity, search cost, etc. We

illustrate this insight formally in the following equation:

T =



price sensitivity︷ ︸︸ ︷
ps(X1)

search cost︷ ︸︸ ︷
sc(X1) . . .

ps(X2) sc(X2) . . .
...

...
. . .

ps(XN ) sc(XN ) . . .

×


Study 1 Weights︷︸︸︷
w

(1)
1

Study 2 Weights︷︸︸︷
w

(2)
1 . . .

Study J Weights︷︸︸︷
w

(J)
1

w
(1)
2 w

(2)
2 . . . w

(J)
2

...
...

. . .
...

 ,

where factors include individual-level primitives such as price sensitivity and search cost that can be any

complex function of covariates, and the linear weights determine how much these factors matter in driving

the treatment effect for each study.7

When is low-rank assumption more reasonable? In general, a greater commonality in the structure of

different studies makes the low-rank assumption more suitable. For example, suppose one is interested in

how much each user finds an ad relevant. In that case, it is reasonable to assume that a few factors can

largely explain the variation in users’ ad preferences, as is commonly assumed in recommender systems.

However, if studies are completely unrelated, the low-rank assumption will be less realistic. In other words,

more than only a few factors determine the treatment effects across all studies. In general, the homogeneity

of studies is a condition that is likely satisfied in most digital platforms as interventions likely share some

common characteristics. In Web Appendix C.4, we present more structural reasons why this assumption
7It is worth emphasizing that the CATE in each study being a linear function of a few factors is not in contrast with the fact that

CATE estimators are often designed to flexibly capture the underlying relationship between covariates and treatment effects. The
factors can still be very complex functions of user characteristics that need flexible learners to be identified.
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is widely applied in practice, particularly in recommendation systems. Later in §6.1, we discuss why this

assumption likely holds in our application context: online advertising.

Can we test the low-rank assumption? A key advantage of using low-rank methods is that the assump-

tion is testable and transparent. Recall the validation procedure in §5.2, where we directly select the best-

performing low-rank approximation of the matrix on the validation set. This allows us to assess whether the

underlying matrix is indeed low-rank. Moreover, it is important to note that even if the underlying matrix is

not low-rank, our method performs at least as well as existing approaches. In §7, we present an empirical

application in the context of mobile in-app advertising and validate the low-rank assumption in that setting.

5.3.2 Missingness Patterns

The second set of assumptions for matrix completion to work relates to the missingness pattern. In our

setting, feasibility matrix F produces the missingness pattern in the CATE matrix. Most of the prior theo-

retical literature on matrix completion assumes fully random missingness to derive theoretical results on the

recovery of the matrix (Candès and Recht 2009, Mazumder et al. 2010, Chen et al. 2019). More recent pa-

pers extend these theoretical results to specific non-random missingness patterns (Ma and Chen 2019, Athey

et al. 2021, Agarwal et al. 2021). In general, a common factor in all this literature is to assume that the miss-

ingness pattern does not affect the identification of factors. We present the following informal assumption

and refer the reader to Agarwal et al. (2021) for formal details we need for the missingness pattern:

Assumption 2. For each missing entry in the CATE matrix, there are enough neighboring rows and columns

in the feasibility matrix F with observed entries to identify the factors.

Intuitively, the missingness pattern needs to be such that we can jointly exploit the similarities between

users and between treatments. As such, if the data are missing for an entire row, there is no way to recover

the parameters for that row. This issue may arise in settings where a user is very responsive to interventions

and therefore deterministically receives the intervention across all studies. However, even in such cases, one

could empirically verify whether such missingness patterns exist. In our calibrated simulation and empirical

validation exercises in §6 and §7, we consider realistic and challenging missingness patterns to provide

validity to this assumption.

Theoretically, we need Assumption 2 to ensure that we can identify factors from the observed entries.

That is, there must be enough variation in the observed data to estimate all entries of the low-rank matrix.

We acknowledge that this is a strong assumption, but we are not concerned about it in our application for

two reasons. First, platforms run numerous fully randomized experiments, in which all rows are feasible for

the CATE estimation task. Including these experiments populates the observed matrix by creating columns

that are fully observed, thereby ensuring identification. Second, there are simple ways to test whether

this assumption is reasonable. One approach is to use the feasibility matrix for a simulated low-rank ap-

proximation. Specifically, one could simulate the underlying matrix using a low-rank structure and induce

missingness according to matrix F . If the algorithm is able to accurately complete the matrix by identifying

the low-rank factors, this provides evidence in support of Assumption 2.
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5.3.3 Noise in Estimated CATE Matrix

Finally, since our task at hand is completing a noisy matrix, we must impose some structure on the noise

added to entries. In general, we have T = T̂ + E, where E is the error in CATE estimates. We impose the

following assumption on the noise in the CATE matrix:

Assumption 3. The error E in the matrix is independent of the underlying missingness pattern F .

This assumption suggests that there is no systematic error in CATE estimates that is correlated with the

missingness pattern. Theoretically, this ensures that the systematic noise in observed entries does not bias

the objective function. For example, if our CATE estimates are upward biased for the feasible region, this

would bias the estimates from our matrix completion approach. It is important to note that this assumption is

satisfied as long as the CATE estimate is unbiased and consistent for the feasible entries. We are not worried

about this assumption since we use unbiased CATE estimators in our applications.

5.4 Algorithm Evaluation

Algorithm 1 estimates all entries in the CATE matrix. One way to evaluate our algorithm is to assess the

accuracy of these estimates when ground-truth values are available. Since CATE estimates can be used

to develop personalized policies, another way to evaluate the algorithm’s performance is by examining its

targeting effectiveness. We present the evaluation strategies for these two components as follows:

• Accuracy Performance: Our algorithm returns the complete matrix T̂ complete. If we know the ground

truth CATE matrix T , we can define the Root Mean Squared Error of both CATE and ATE estimates as

follows:

RMSECATE(T̂ complete; T ) =

√√√√ 1

NJ

N∑
i=1

J∑
j=1

(T̂ complete
i,j − Ti,j)2 (13)

RMSEATE(T̂ complete; T ) =

√√√√√ 1

J

J∑
j=1

( 1

N

N∑
i=1

T̂ complete
i,j − 1

N

N∑
i=1

Ti,j

)2
 (14)

The RMSE measures approximate the average deviation of our estimates from the truth.

• Targeting Performance: A more managerial measure that we can use is the targeting performance of

the personalized policy developed based on our estimated matrix T̂ complete. This would be a proxy for the

real economic gains from using our proposed algorithm. To develop this measure, we simply measure

the average gain from assigning the top α fraction of units to treatment based on a model, compared to

giving the control condition to the whole population. We define this measure using the function Gain(α)
as follows:

Gain(α)(T̂ complete; T ) = 1

NJ

J∑
j=1

N∑
i=1

1

(
T̂i,j ≥ F−1

T̂j
(1− α)

)
Ti,j , (15)

where the indicator function only selects the top α fraction of estimated CATE for any study j. We

further define similar but normalized measure that compares the average gain from the model to the that
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from the oracle (first-best) that knows the true CATE values. We define this using the OracleRatio(α)
as follows:

OracleRatio(α) =
Gain(α)(T̂ complete; T )

Gain(α)(T ; T )
(16)

The Oracle Ratio measure is always less than or equal to 1 and has a straightforward modeling inter-

pretation: it indicates the percentage of the gap between the oracle and the all-control policy that is

explained by the algorithm.

In both our applications in §6 and §7, we use both measures to evaluate the performance of our algorithm.

6 Application: Online Advertising

We focus on online advertising as a prominent application of our proposed algorithm. Estimating ad ef-

fectiveness at the population or individual level has been a longstanding goal in both research and practice.

However, this task is challenging because individuals’ assignment to ads is not random. Advertising plat-

forms use auctions in conjunction with machine learning algorithms that tune auction weights to allocate

ads. Given that ad revenues account for the majority of total revenues for major advertising platforms such

as Meta and Google, these platforms are often reluctant to run experiments or induce large-scale random-

ization in their auctions, as it is well known that randomized allocation reduces auction revenues (Myerson

1981). Thus, using observational methods to recover ad effectiveness is of great value to all parties involved,

including both the advertising platform and the advertisers.

In this section, we first define the CATE matrix in §6.1, which is our target estimand. We then describe

algorithmic allocation in common advertising auctions and show how this allocation leads to a violation of

the overlap assumption in §6.2. Next, we present results from our calibrated simulations in §6.3. Lastly, we

present a series of robustness checks and sensitivity analyses in §6.4.

6.1 Estimation Target: CATE Matrix

We start by defining the estimation target in the advertising application. Problem 2 presents a general

characterization of the problem. In this section, we want to define all elements in that problem for the online

advertising application. In this application, there are N users indexed by i, and each study corresponds to

an advertising campaign indexed by a, with a total of A campaigns. The treatment variable W
(a)
i indicates

whether or not user i is exposed to ad a, over the course of potentially many impressions shown to user

i.8 Each ad campaign a defines a conversion outcome, which could be a click, app install, website visit, or

actual purchase of the advertised product, depending on the campaign objective. The outcome of interest

Y
(a)
i is user i’s conversion outcome for ad campaign a. Each user has a vector of characteristics Xi that are

user-level characteristics used for targeting.9 For each pair of unit i and ad campaign a, we can formulate
8This is consistent with the recent experimental literature on advertising (Lewis et al. 2011, Gordon et al. 2019, 2022) where we

define units to be users as opposed to the ad response modeling where we are interested in the effects at the impression level.
9One could change the unit of observation to a targeting profile rather than a user, characterized by the mixture of all covariates.

This allows for changes in the targeting profiles of a certain user. We use this approach in our empirical application in §7.
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the Conditional Average Treatment Effect (CATE) as follows:

τ (a)(Xi) = E[Y
(a)
i (1)− Y

(a)
i (0) | Xi], (17)

which helps us define the CATE matrix T[N×A]. The CATE matrix is the ultimate target for advertising

platforms and advertisers as it allows them to target ads at the individual level. It further enables estimating

Average Treatment Effect (ATE) for each ad, which is often a key objective for the platform, advertisers,

and researchers (Lewis et al. 2011, Gordon et al. 2019, 2022).

Our algorithm requires an important low-rank assumption on the CATE matrix. We now justify why

this assumption is reasonable for our application setting. First, it is useful to consider the opposite case

where the CATE matrix is full-rank. Intuitively, it means that the individual-level treatment effect for each

ad is independent of those for all other ads. That is, the treatment effect for each ad tells us nothing about

the treatment effects for other ads. However, we expect the treatment effect for one ad to be informative

about another ad, as suggested by the prior advertising literature (Zantedeschi et al. 2017, Gordon et al.

2023). For example, if a smartwatch ad has a high treatment effect on a user, we expect the ad for a mobile

health app to have a high treatment effect on that user. Similarly, if an ad for a right-wing news channel is

effective for a user, we expect the ad for a left-wing news channel to be ineffective. These are just simple

examples where the CATE from one ad is likely informative about that for another ad, thereby violating a

full-rank assumption. Secondly, the prevalence of using matrix factorization models for ad targeting and

click-through rate prediction tasks offers field evidence for the validity of the low-rank assumption in this

setting (Menon et al. 2011, Juan et al. 2016, Choi et al. 2020). Later in §7, we validate this assumption in

the context of mobile in-app advertising.

6.2 Algorithmic Allocation through Auctions

As discussed earlier, obtaining the CATE matrix is the ultimate goal for advertising platforms, advertisers,

and researchers. However, estimating this matrix is challenging because the assignment of users to ads is

not random. What determines a user’s assignment to an ad is the auction run by the advertising platform.

In this section, we describe the ad allocation process in the most commonly used advertising auctions and

characterize propensity scores in our application.

We define π(a)(Xi) as the propensity score for ad a to be shown to user i, which is a function of

users’ observable characteristics Xi. Suppose there is an impression opportunity for user i. We index these

impression opportunities by t. The advertising platform runs an auction to allocate an ad to this impression.

Consider a superset Ai of size Ai of ads who are interested in participating in the auction for user i’s

impressions. For each impression, only a subset of these ads are available due to their budget decisions

and the auctioneer’s computational reasons (Kim et al. 2024). We consider a setting where the platform

randomly draws a subset A(r)
i,t of size Ar to include in the auction for impression t of user i.10 For the

10This random sub-sampling from the full set of candidates is the key source of randomization in auctions. Even if the platform
does not use this direct form of bidder sub-sampling, the number of bidders participating in an auction is a fraction of all bidders
because of reasons such as budget exhaustion and budget pacing, some of which are exploited as sources of random variation in ad
exposure (Gui et al. 2021). Since the specific form of bidder sub-sampling is a stylized abstraction, we perform robustness checks
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set of participating ads, the auction requests bids from advertisers to award the impression to the one with

the highest bid, as in both second- and first-price auctions, which are the most commonly used auctions

by advertising platforms. Let bi,t,a denote the bid submitted by advertiser a in impression t of user i. The

winning ad for this impression, denoted by a∗i,t, will be determined as follows:

a∗i,t = arg max
a∈A(r)

i,t

bi,t,a (18)

We now link this to the treatment assignment for each ad a. Let Ti denote the total number of impression

opportunities for user i. If ad a is selected in at least one of Ti impressions shown to user i, then we have

W
(a)
i = 1. Therefore, given Ti and bids submitted by advertisers, we can calculate the propensity score

π(a)(Xi) for each user i. In particular, for fixed bid profiles for each user, the following lemma offers a

closed-form relationship for propensity scores:

Lemma 2. Suppose that each bidder a submits a bid bi,a for each one of user i’s impressions, such that

bi,1 ≤ bi,2 ≤ · · · ≤ bi,A, without loss of generality. For user i, ad a’s propensity score is determined as

follows:

π
(a)
i = 1−

(
1− 1(a ≥ Ar)

Ar

(
a−1
Ar−1

)
A
(
Ai−1
Ar−1

) )Ti

(19)

Proof. See Web Appendix D.1.

An immediate corollary of Lemma 2 is that the overlap assumption is violated because the propensity

score is equal to 0 if a < Ar, which is the deterministic no-assignment region. Likewise, for higher bids,

the probability quickly converges to 1 as Ti increases, creating a deterministic assignment region. It is

worth emphasizing that this insight does not come from the fixed size of Ar. Later in §6.4, we relax the

assumption on fixed Ar and impose a different micro-structure on ad’s availability based on their budget

pacing and reserve pricing and arrive at the same insights. Now, we ask whether this overlap violation is

consequential for observational methods that aim to estimate Average Treatment Effects (ATE).

To answer this question, we focus on advertisers’ bids as a key factor influencing the propensity scores

and deterministic regions. Theoretically, advertisers’ bids are functions of how much they value an impres-

sion. For example, in a second-price auction, theory suggests that advertisers bid their valuations. The value

of an impression is closely tied to the treatment effect of an ad for the user, known as CATE. Although

advertisers do not necessarily know the true CATE for a user, it is reasonable to assume that they have an

imperfect version of this signal based on data and modeling tools they have in place (Waisman et al. 2025).

Together, for each ad, a lower CATE for a user leads to a lower bid submitted by the ad, which, in turn,

leads to a higher possibility of belonging to the deterministic no-assignment region. Therefore, we expect

the overlap violation to bias the estimates for population ATE in this context.

Finally, from a practical point-of-view, one could argue that if CATE values are low for the deterministic

no-assignment region, not identifying those values may not be important for advertisers or platforms as they

are looking for users with higher CATE. However, it is important to note that advertisers do not have a

and sensitivity analysis in §6.4 to ensure the validity of our algorithm.
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perfect CATE estimate for each user. As a result, there can be numerous high-CATE users within the

group with deterministic no-assignment, leading to missed opportunities for both advertisers and platforms.

We demonstrate these missed opportunities in our results in §6.3.3 and quantify the economic gains from

identifying CATEs through our algorithm by evaluating its targeting performance.

6.3 Results from Calibrated Simulations

We present the results from calibrated simulations in the online advertising context. In particular, we cali-

brate three important details in our simulations. First, we use the deciles for lift estimates from randomized

controlled trials presented in Table 4 of Gordon et al. (2022) to set the ATE for our studies.11 Second, we

assume an underlying low-rank CATE matrix consistent with applications of matrix factorization models

in ad targeting.12 Third, we use the micro-founded algorithmic ad allocation presented in §6.2 to gener-

ate ad assignments that mimic reality. Calibrating the details of our application setting ensures that the

challenges imposed on our algorithm and benchmarks are realistic. We carry out large-scale simulations

with N = 50, 000 users with D-dimensional covariates X[N×D] coming from N (0, σx), and A = 100 ad

campaigns. We present all the simulation details in Web Appendix D.2.

In this section, we first present results on the overlap violation in our application context in §6.3.1. Next,

in §6.3.2, we present the results on the performance of our algorithm compared to existing benchmarks in

terms of estimation accuracy. Finally, in §6.3.3, we demonstrate how the increased estimation accuracy from

our algorithm translates into economic gains from better targeting.

6.3.1 Overlap Violation

We now show the results from our simulation to examine the extent to which the algorithmic ad allocation

violates the overlap assumption. As discussed earlier, advertisers’ bid for a user bi,a is a function of their own

estimate of CATE, denoted by τ̃ (a)(Xi). It is worth noting that τ̃ (a)(Xi) is not a fully calibrated estimate

of the true CATE τ (a)(Xi) because of issues such as modeling error or Xi observability, but it is highly

correlated with it. In our simulation, we assume a correlation of 0.5 between τ̃ (a)(Xi) and τ (a)(Xi). We

consider a second-price auction, so we use the conventional assumption that bidders submit their valuation

as bid: bi,a = τ̃ (a)(Xi) (Waisman et al. 2025).13 For each user, we simulate the number of impression

opportunities Ti as a random draw from a discrete uniform distribution from 1 to 50. We assume the same

set of ads competing for all impressions, that is, Ai = A = 100, and set Ar = 10, which means that

the platform randomly draws 10 bidders in each impression to participate in the auction. We then run the

auctions for all impressions to generate the data and determine the propensity scores.
11It is worth emphasizing that calibrating the treatment effects naturally poses a challenge for our algorithm due to the low signal-

to-noise ratio in advertising experiments and the fact that the ATE is close to zero for many ads. Therefore, strong performance of
our algorithm in this setting would suggest even better performance in settings with stronger treatment signals. We verify this by
running simulations with higher magnitudes of treatment effects.

12The low-rank structure of the CATE matrix is the fundamental assumption underlying our proposed algorithm. We impose this
assumption in our calibrated simulation to demonstrate the algorithm’s performance. Later, in §7, we relax this assumption to test
its validity in an empirical setting.

13One could easily relax this assumption to allow for other factors to affect the advertiser’s bid and to extend to cases for other
auction such as first-price auctions or auctions with some form of quality scoring. To the extent that bid is a function of valuation,
the positive association between the true CATEs and bids will remain.
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Figure 4. Empirical CDF of the propensity scores for user-ad pairs in online advertising application.

Figure 4 visualizes the empirical Cumulative Density Function (CDF) for the propensity scores for all

pairs of users and ads. Theoretically, we have established that for (Ar − 1)/A = 0.09 fraction of all pairs

must have a propensity score exactly equal to 0. However, as shown in Figure 4a, the vast majority of user-ad

pairs have a very small propensity score. In particular, when we zoom into the x-axis in Figure 4b, we find

that the propensity score is lower than 0.01 for over 50% of user-ad pairs. These instances practically violate

the overlap assumption as it is extremely hard for a model to estimate CATE for an observation with such

low propensity scores. Our results show that the propensity scores produced in the online advertising setting

violate the overlap assumption and pose challenges to algorithms that aim to estimate treatment effects using

observational data. In Web Appendix D.3, we present the GATE for different regions of the data in each

study to see how far is the feasible information (probabilistic regions) from the true ATE.

6.3.2 Performance of the Proposed Algorithm

We now examine the performance of our proposed algorithm in overcoming the challenges posed by the

overlap violation compared to existing benchmarks. In particular, we examine how accurately each method

estimates ATE and CATE, as we have the underlying oracle ATE and CATE values. We start by comparing

the performance of our model with the Double ML method in recovering ATE and show the patterns in

Figure 5. As shown in this figure, the Double ML approach fails to recover the true ATE. Combining our

theoretical propositions in §4 and the discussion in the previous section on the overlap violation problem in

our application setting, we argue that this is because many observations lie in deterministic no-assignment

regions with, on average, lower CATE values. As a result, ignoring these points leads to an overestimation

of the ATE. In contrast, our proposed algorithm performs well despite the presence of overlap violation.

This is because our algorithm attempts to recover the full distribution of CATEs by systematically using

estimable CATE in other distributions and using the collective information to impute the missing values of

CATEs in the overlap-violating regions.

We then extend our analysis in two important directions. First, we present the performance of different

methods in terms of Root Mean Squared Error (RMSE) using the oracle ATE and CATE as the true targets.

We aggregate these performance metrics over all ads in our study as described in §5.4. Second, we consider
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Figure 5. The performance of the proposed algorithm and Double ML in recovering ATE.

Method RMSE for ATE RMSE for CATE

Algorithm 0.153 1.178
Double ML 1.969 3.342

Algorithm (Rank = 5) 0.852 2.343
Algorithm (Rank = 20) 0.276 1.505

Algorithm (Incorrectly Estimated Propensities) 1.425 2.589
Algorithm (Correctly Estimated Propensities) 0.773 1.244

Table 1. Performance of our algorithm and benchmarks in recovering oracle ATE and CATE.

a richer set of models, including different versions of our algorithm with mis-specified rank and estimated

propensity scores. We present the results of this practice in Table 1. A few important insights emerge from

the results in this table. First, our proposed algorithm performs better than Double ML in recovering ATE

and CATE. For ATE, the results in the first two rows show a numerical equivalent of Figure 5. Our results

are not surprising for CATE, given that benchmarks like DML cannot estimate CATE. For that reason, in

§6.3.3, we use better ways to evaluate the CATE performance of our algorithm by demonstrating its targeting

performance and economic gains, as suggested in §5.4.

In the second part of Table 1, we focus on one of the key specifications of our algorithm: rank. The

underlying rank for the CATE matrix is 10. We note that the cross-validation procedure described in §5.3.1

correctly identifies this rank–without prior knowledge of the true value–by fine-tuning the regularization

parameter λ. However, we still want to see how the algorithm would perform with different rank spec-

ifications. We focus on two mis-specified rank cases without cross-validation: (1) a lower than optimal

rank (= 5) and (2) a higher than optimal rank (= 20). Intuitively, the model with a lower-than-optimal
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rank is often too simple, which leads to biased estimates of entries in the matrix, whereas the model with

a higher-than-optimal rank can be too complex, which leads to higher variance. In Table 1, models with

mis-specified ranks perform worse. However, we note that both models still outperform the Double ML

benchmark, suggesting that the algorithm can still exploit cross-ad variation, even with a mis-specified rank.

Finally, we focus on the case where propensity scores are not known but need to be estimated and

consider two separate cases: (1) incorrectly estimated propensity scores, where only a subset of important

covariates that determine propensity scores is used, and (2) correctly estimated propensity scores, where all

covariates are used to ensure that we have a calibrated propensity model. Two interesting results emerge

from our analysis. First, as expected, we find that the model with incorrectly estimated propensity scores

performs worse than the one with correctly estimated propensity scores in both metrics. Second, we find

that although the algorithm with correctly estimated propensity scores performs well, it still underperforms

compared to the version with known propensity scores across both metrics.

6.3.3 Economic Gains from the Proposed Algorithm

As discussed earlier, the overlap problem arises because observations in the deterministic no-assignment

region tend to have lower CATE values. In our application, overlap violations for a user-ad pair are di-

rectly tied to the user’s low value to the advertiser. One might therefore argue that, while our algorithm

recovers both ATE and CATE, it offers limited practical value to firms—such as advertising platforms and

advertisers—since they are likely to disregard the overlap-violating region due to its lower average CATE.

In this section, we examine the economic value of decision-making based on our algorithm by addressing

the following questions: What are the consequences of ignoring the overlap-violating portion of the data for

firms aiming to target effectively? And to what extent can our algorithm improve outcomes for advertising

platforms and advertisers?

To answer these questions, we conduct a personalization exercise in which we compare the performance

of different algorithms in selecting the targeting population. This allows us to evaluate outcomes under

various targeting strategies and assess the economic gains from our proposed algorithm. We follow the

evaluation procedure described in §5.4, using the functions Gain(α) and OracleRatio(α). We set α =

0.1, meaning each model selects the top 10% of CATE estimates within each study. To assess whether the

gains from our algorithm are substantial, we compare it against two benchmarks: (1) Data, where targeting

is based on the top 10% of users most likely to be assigned to each ad, as determined by their propensity

scores; and (2) Bids, where advertisers target the top 10% of users for whom they have the highest bids.

If ignoring the overlap-violating region has no meaningful impact on targeting decisions, we should not

observe significant performance differences between our model and these benchmarks. This exercise enables

us to quantify the economic gains attributable to our algorithm.

We present the results of this exercise in Table 2. The first column reports the average gains from each

targeting policy, while the second column shows the ratio of each policy’s average gain to that of the ora-

cle CATE-based targeting model—that is, the first-best performance. Notably, the average gains from our

model are substantially higher than those achieved using bids or the algorithmic allocation observed in the

data. In other words, by not ignoring the overlap-violating region, our model achieves nearly double the

targeting effectiveness. This finding suggests that there are considerable targeting opportunities within the
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Method Gain(0.1) OracleRatio(0.1)

Algorithm 0.474 0.981
Bid 0.254 0.525
Data 0.226 0.467

Algorithm (Rank = 5) 0.390 0.807
Algorithm (Rank = 20) 0.461 0.954
Algorithm (Incorrectly Estimated Propensities) 0.300 0.622
Algorithm (Correctly Estimated Propensities) 0.460 0.951

Table 2. Economic gains from targeting based on different models.

overlap-violating region, despite its lower average CATE. We further explore this insight in Web Appendix

D.4 by visualizing the distribution of CATE values across different regions. Relative to the oracle bench-

mark, our algorithm recovers approximately 98% of the first-best performance. We also evaluate alternative

specifications of our algorithm, including cases where the rank is mis-specified or propensity scores are

unknown. Importantly, in all of these cases, our mis-specified algorithm continues to outperform the two

benchmarks based on bids and data, even though its performance is weaker than that of the well-specified

version.

6.4 Robustness Checks and Sensitivity Analysis

In this section, we conduct robustness checks and sensitivity analyses to examine how the performance of

our algorithm is affected by changes in various aspects of the data-generating process and to establish its

boundary conditions. We begin with a robustness check focused on the auction mechanism used by the

platform to allocate ads. In our main analysis, we consider a combinatorial case in which the platform

randomly draws a fixed number of ads from the inventory to include in the auction. In Web Appendix D.5.1,

we relax the assumption of a fixed auction size Ar and consider an alternative setting in which each ad’s

availability is determined by its budget pacing decisions and the auction’s reserve pricing. We find that

all of our qualitative results hold in this alternative environment, with only minor quantitative differences,

suggesting that our main setting is a good approximation of settings where the probabilistic assignment

stems from advertisers’ budget-pacing decisions.

In particular, we conduct sensitivity analyses on four key components: (1) the size of the advertising

sample in each auction, Ar; (2) the rank of the underlying CATE matrix; (3) the variance of the underlying

CATE matrix; and (4) the correlation between advertisers’ CATE values and their bids. The full results are

presented in Web Appendix D.5.2. We begin by increasing Ar, which induces more deterministic assign-

ment and makes the feasibility matrix sparser. As expected, the performance of our algorithm deteriorates as

the assignment becomes more deterministic. However, it still outperforms conventional methods across all

evaluation metrics, underscoring the value of transferring information across studies. Next, we vary the rank

of the underlying CATE matrix. Higher-rank matrices pose greater challenges for the matrix completion al-

gorithm, so we expect better performance in low-rank scenarios. Our findings confirm this intuition: as the
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underlying rank increases, performance declines, but the algorithm continues to outperform conventional

methods by leveraging information in the observed entries to recover the signal in the missing ones. Third,

we assess the effect of increasing the variance of the underlying CATE matrix. As expected, estimation

error increases with variance. Interestingly, however, the targeting performance of our algorithm remains

robust, even at high levels of variance. This is because the value of targeting grows as the CATE matrix be-

comes more heterogeneous (Rafieian and Zuo 2024), which helps offset the decline in estimation accuracy.

Finally, we vary the correlation between advertisers’ CATE values and their bids. In all cases, our algorithm

consistently outperforms the benchmarks.

7 Empirical Validation Exercise

In this section, we use real data from mobile in-app advertising to provide empirical validation for our

algorithm. Our primary goal is to relax the rank assumption and assess its validity in an applied setting.

We also aim to demonstrate the performance and economic value our algorithm delivers in environments

with overlap violations. We begin by describing the empirical context in §7.1. Next, in §7.2, we outline the

empirical framework, define the target estimand, and present our identification strategy. We report validation

results in §7.3 and evaluate the performance of our algorithm in §7.4.

7.1 Setting and Data

The empirical setting for our study is mobile in-app advertising, an industry that has experienced sustained

growth over the past decade. We use impression-level data from a leading mobile in-app advertising net-

work in a large Asian country, which held over 85% market share at the time of the study. The dataset

includes over one billion ad impressions. Our sample is identical to that used in Rafieian (2023); we refer

readers to that paper for detailed information on sampling. In this sample, we observe 6,357,389 impres-

sions from 327 distinct ads displayed within a messenger app. For each impression, we observe a rich set of

covariates, including demographic features such as province, latitude, longitude, smartphone brand, mobile

service provider (MSP), and connectivity type. We also observe several historical and session-level features

constructed from both short- and long-term user activity (e.g., the variety of past ads seen, and the number

of past impressions). Table 3 presents summary statistics on user behavior within the messenger app.14

The data reveal substantial heterogeneity in user behavior: the median user participated in 8 sessions, was

exposed to 37 ad impressions across 10 distinct ads, and made 1 click.

Besides the scale and richness of the data, a few key features of our setting and data make it ideal for

our study. First, unlike the standard practice in advertising auctions that produce limited randomization

in ad allocation, this platform uses a quasi-proportional auction wherein each bidder has a probability of

winning proportional to each advertiser’s quality-adjusted bid. That is, if ad a’s quality-adjusted bid is q(a),

its probability of winning in an auction is q(a)/
∑

j∈A q(j), where A is the set of participating ads in that

auction. Second, the targeting provision for advertisers is limited such that they can only target ads based
14This corresponds to Table 2 in Rafieian (2023), which includes all user impressions. Table 3, by contrast, is restricted to

impressions within the messenger app only.
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Variable Mean SD Min Median Max

Number of Sessions 15.71 20.64 1.00 8.00 253.00
Number of Impressions Seen 91.25 159.87 1.00 37.00 4655.00
Variety of Ads Seen 13.47 11.79 1.00 10.00 114.00
Number of Clicks Made 1.38 2.08 0.00 1.00 19.00
Click-through Rate (CTR) 0.03 0.06 0.00 0.01 1.00

Table 3. Summary statistics of the user behavior in the messenger app.

on broad targeting categories that are all observable to the researcher. Therefore, as shown formally in

Proposition 1 of Rafieian (2023), observed covariates fully determine the distribution of propensity scores.

7.2 Empirical Framework

7.2.1 Effect of Focal Ad vs. Platform Ad

We start by defining the causal effect of interest. In our setting, each impression is characterized by a

targeting profile Xi, and is allocated to an ad from the set of participating ads in that auction, denoted by

Ai. We are interested in the causal effect of showing a focal ad a∗ as the treatment relative to a platform

ad a(p) that the platform can serve at any time.15 As such, the assignment to the focal ad in each study is

the treatment condition (W (∗)
i = 1) and the control condition represents the assignment to the platform ad

(W (∗)
i = 0). Let Y (∗)

i (w) denote the potential click outcome for the targeting profile Xi upon receiving

condition w ∈ {0, 1}. We can define the CATE for ad a for targeting profile Xi as follows:

τ (∗)(Xi) = E[Y
(∗)
i (1)− Y

(∗)
i (0) | Xi] (20)

In our empirical analysis, we aim to recover the parameter defined in Equation (20) and present results

demonstrating our ability to estimate this parameter across various settings. A few points are worth noting

in defining our target estimand. First, our unit of analysis is a targeting profile rather than a user. This

implies that a single user can be represented by multiple targeting profiles, which aligns more closely with

the contextual bandits literature, where individual contexts arrive dynamically and a user’s context can

evolve over time. Second, the click outcome we focus on serves as a key conversion metric. Since all ads

are for mobile apps, clicks are closely tied to app installs. Moreover, the platform operates a pay-per-click

auction, meaning each click directly contributes to platform revenue. Third, we use the causal estimand

above primarily because it is well-defined. However, the comparison with the platform ad also serves as a

meaningful benchmark for assessing the level of engagement an ad generates.

7.2.2 Definition of CATE Matrix

The causal effect of the focal ad a∗ relative to the platform ad a(p) constitutes only one study. For our

algorithm, we need to define a CATE matrix that helps with the estimation of the causal effects in our focal

study. To define this CATE matrix, we define the same causal effect as in Equation (20) for other ads in our
15It is worth emphasizing that in the data, the platform ad participates in an auction and has no advantage over other ads. However,

it never runs out of budget, which is why we focus on it as the control condition.
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inventory. That is, for any ad a ∈ A, we define the following CATE:

τ (a)(Xi) = E[Y
(a)
i (1)− Y

(a)
i (0) | Xi], (21)

where Y
(a)
i (1) and Y

(a)
i (0) are potential outcomes for cases where ad a and platform ad a(p) are shown in

the impression with targeting profile Xi. This allows us to form the CATE matrix, where rows are different

targeting profiles and columns are different ads in our data. The low-rank assumption in this setting indicates

that the information in CATE from other ads could inform us about the CATE for the focal ad.

7.2.3 Identification Strategy

We now discuss our identification strategy for estimating the CATE of each ad a as a function of targeting

profiles. Consider the task of estimating the CATE for ad a. We need to select impressions that (1) satisfy

the causal inference assumptions, such as overlap and unconfoundedness, and (2) are either allocated to ad

a∗ (treatment condition) or the platform ad a(p) (control condition). We use the randomness induced by the

quasi-proportional auction as our main identification strategy. Let q(∗) and q(p) denote the quality-adjusted

bids for the focal ad a∗ and the platform ad a(p) for a given impression. If both ads a∗ and a(p) participate

in the auction for that impression, their corresponding winning probabilities will be q(∗)/(
∑

j∈A q(j)) and

q(p)/(
∑

j∈A q(j)). This implies that the ratio only depends on q(∗) and q(p). Therefore, for the set of im-

pressions where both ads a∗ and a(p) participate and one of them wins, we have both the unconfoundedness

and overlap assumptions satisfied because we know that the non-deterministic probability of treatment as-

signment (assignment to ad a∗) is q(∗)/(q(∗) + q(p)) and the probability of control assignment (platform ad

a(p)) is q(p)/(q(∗) + q(p)). Given the infrequent updating of bids by advertisers and quality scores by the

platform, the proportions remain largely stable for any impression where both ads participate and one wins

the auction; this greatly stabilizes the estimation of causal parameters.

In summary, to estimate CATE for each ad a, we can select a sample of impressions allocated to either ad

a or the platform ad a(p) where both ads participated in the auction (to satisfy overlap), and estimate CATE

τ̂ (a)(·) using any CATE estimator as a function of the targeting profile x. However, it is worth emphasizing

that the estimates are not accurate for all targeting profiles. In particular, if one ad does not participate in

the auction for an impression with targeting profile x′, the assignment probability will be 0, which violates

the overlap assumption, indicating that our estimate τ̂ (a)(x′) no longer has statistical properties such as

unbiasedness and consistency. Therefore, it is crucial not to use our CATE estimates for the overlap-violating

regions. The bright side in our empirical setting is that we can identify the overlap-violating impressions for

any ad a, because we know that there are only two reasons for an ad not participating in the auction for an

impression: (1) the ad specifically excludes a targeting category in that impression (e.g., smartphone brand),

or (2) the ad is not available due to budget exhaustion. We ensure that the sample we use to estimate CATE

for each ad a satisfies the overlap and unconfoundedness assumption, and we avoid predicting CATE for

overlap-violating regions.

7.2.4 Empirical Estimation of the Underlying CATE Matrix

We now discuss our approach to estimating the underlying CATE matrix. Figure 6 outlines the steps in our

estimation procedure. We present these steps in our empirical approach as follows:
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Figure 6. Step-by-step procedure for estimation of the underlying CATE matrix

• Step 1: We first sample targeting profiles to estimate the CATE for the focal ad, as defined in Equation

(20). To do this, we draw a random sample of 100,000 impressions from the full set of impressions

awarded to either the focal ad or the platform ad, conditional on both having a non-zero propensity

score. This ensures we can consistently estimate the CATE for these impressions and establish a ground

truth. In Web Appendix E.1, we present a complete list of features used to characterize a targeting

profile.

• Step 2: In the second step, we sample ads and construct the CATE matrix. To do this, we select ads from

the full set of 327 ads that have at least 10,000 impressions in our data, ensuring reasonable statistical

power for our estimation. We include 68 ads in addition to the focal and platform ads, resulting in a

total of 70 ads that collectively account for 94% of all impressions observed in our data. More detailed

information on the cumulative share of impressions allocated to the top ads is provided in Web Appendix

E.2.

• Step 3: We determine the feasibility of CATE estimation for each ad in the sample of targeting profiles.

Naturally, there are impression-ad pairs for which the overlap assumption is violated in our data, due to

targeting decisions. As discussed in §7.2.3, our CATE estimates for an ad are not valid in an impression

if that ad could never have been shown in those impressions (deterministic assignment). We replace

entries where the overlap assumption for an ad is violated with question marks to ensure we only use

estimates with proven consistency. This sets the scope for our analysis and highlights the presence of

both probabilistic and deterministic assignment regions in real applications. In Web Appendix E.3, we

visualize the missingness pattern in our CATE matrix.

• Step 4: In the final step, we estimate CATE for each ad and predict CATEs for feasible entries from

the previous step. To estimate CATE for each ad a, we first draw a sample of impressions allocated to

either ad a or the platform ad a(p) that satisfy the overlap assumption. As such, the estimation sample

for each ad is different from the set of targeting profiles selected for the focal ad. However, we can

use the resulting estimated function τ̂ (a)(·) for each ad a to predict CATE for the feasible entries in the

CATE matrix. To estimate CATE for the focal ad, we use the sample of targeting profiles illustrated

in Figure 6. For CATE estimation, we use R-learner with XGBoost to estimate the nuisance functions

with a two-fold cross-validation (Nie and Wager 2021). The reason for this modeling choice was the

performance of XGBoost R-learner in our context. In Web Appendix E.4, we provide more details on

the sample size and the CATE estimation procedure for each ad and present results on the distribution of

CATE estimates for the focal ad.
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Figure 7. RMSE of low-rank approximation of the estimated CATE matrix on the test data using SoftImpute

It is worth emphasizing that the purpose of this exercise is to test the validity of our low-rank assumption

in a real setting that does not impose a low-rank assumption. Consistent with this goal, we use a rich set of

features for CATE estimation to capture the high-dimensionality of real application settings.

7.3 Validation of Low-Rank Assumption

In our calibrated simulation, we assume that the underlying CATE matrix is low-rank based on domain-

specific justifications and the wide use of this assumption in practice, particularly in the context of ad tar-

geting. One of the main purposes of our empirical validation exercise is to test this assumption in an actual

setting. A simple way to test this assumption is to split the entries in the CATE matrix into training and test

entries and apply our SoftImpute algorithm to find the best low-rank approximation. If the rank of the best

approximated matrix is high, we determine that the underlying matrix is not low-rank. We hold out 10%

of the entries for testing the performance and train the SoftImpute algorithm on the remaining 90% of the

entries, with maximum rank equal to 69 (full rank) and using a grid of 100 values for the regularization pa-

rameter λ. Figure 7 shows the performance of matrix factorization approaches with different ranks (Figure

7a) and regularization parameters (Figure 7b). As shown in Figure 7a, the best-performing model on the test

set has a rank of 22, offering validation for the low-rank assumption in our actual empirical setting.

The ability to select the rank optimally through a validation procedure offers great convenience for

researchers. For example, if the best rank in the exercise above is high (e.g., 60), it indicates that our

algorithm’s ability to recover the true causal parameters is limited, as CATEs across studies are not strongly

related. Another key benefit of the validation procedure is that it allows researchers to incorporate their

desired objectives and qualitatively assess the quality of the low-rank approximation. For instance, in our

exercise, one could set a threshold for RMSE based on the overall uncertainty in CATE estimates and

evaluate whether the RMSE of the best-performing model is acceptable. Similarly, a manager could set an

objective threshold for targeting performance to qualitatively assess how well the low-rank approximation

meets their goals.
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Figure 8. Step-by-step procedure for evaluation of our algorithm

7.4 Performance of Our Algorithm

We now turn to the study of the focal ad and evaluate our algorithm to provide an empirical proof of con-

cept. First, we describe our evaluation procedure in §7.4.1. Next, in §7.4.2, we present the results on our

algorithm’s performance in this empirical exercise.

7.4.1 Evaluation Procedure

Our goal is to evaluate how our algorithm performs when the overlap assumption is violated for the focal

ad. We leverage the fact that we have ground-truth estimates for the focal ad, given the unique setting of our

empirical exercise. This allows us to induce realistic missingness in the CATE estimates for the focal study

and then apply our algorithm. Figure 8 illustrates the steps we take to evaluate the algorithm’s performance,

which are summarized as follows:

• Step 1 induces a missingness pattern in the CATE estimates for the focal ad. As discussed earlier in §6,

algorithmic ad allocation can produce a mixture of deterministic and probabilistic patterns due to the

deterministic nature of commonly used auctions (e.g., second-price).16 We consider a similar scenario

to induce realistic missingness patterns. In standard auctions used by advertising platforms, the platform

estimates the CTR for each ad and requests a bid-per-click from each advertiser. The auction then

allocates the impression to the ad with the higher quality-adjusted bid, calculated as the product of the

bid and the estimated CTR. Let ĈTR
(∗)
i and ĈTR

(p)

i denote the platform’s estimated CTRs for the focal

ad and platform ad in impression i, respectively. In our data, both ads submit the same bid-per-click, so

we assume they have the same bid in the simulated auction format.17 As such, we consider an auction

environment where the impression is allocated to the ad with the higher estimated CTR.

We use XGBoost to estimate the CTR for each ad in each impression i and measure the difference

δ̂i = ĈTR
(∗)
i − ĈTR

(p)

i between them. For assignment, we assume that if −0.005 < δ̂i < 0.005, the

assignment is probabilistic; otherwise, the impression is deterministically allocated to the ad with the

higher estimated CTR. This assumption is reasonable because many advertising platforms use posterior

sampling approaches—such as Thompson Sampling—to estimate CTR, where draws from the posterior

distribution can lead to probabilistic assignments (Ghili et al. 2025). This logic is similar to the examples

in Figure 1, where posterior uncertainty in the estimate creates local randomization. In Web Appendix
16Even in a probabilistic auction, such as the one used in our empirical setting, this issue arises due to advertisers’ targeting and

budget decisions, resulting in missing entries in the CATE matrix, as shown in Figure 6.
17We acknowledge that this assumption may not hold in practice; however, our goal in this section is to provide a proof of

concept, not to conduct a full counterfactual analysis.
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E.5, we visualize the distribution of δ̂, which results in 39.3% of impressions falling in the probabilistic

region and the remaining 60.7% in the deterministic region.

• Step 2 applies a matrix completion algorithm as in Algorithm 1 to complete the CATE matrix. Naturally,

this process completes all the entries in the matrix, but we are only interested in the completed entries

for the focal ad. We follow the validation procedure to choose the optimal regularization parameter λ

and complete the matrix using SoftImpute.

• Step 3 uses the imputed CATE values for the focal ad and compares them with the ground-truth estimates

using the evaluation metrics introduced in §5.4. In particular, we use the RMSE of the treatment effect

estimates (ATE and CATE) to evaluate accuracy performance, and Gain(α) and OracleRatio(α) to

examine targeting performance.

7.4.2 Results

We now present the results on the performance of our algorithm. We compare it against three benchmarks:

(1) Double Machine Learning (DML), which estimates the GATE for the probabilistic region of the focal

ad; (2) Ad Allocation Algorithm, which estimates causal parameters using δ̂i = ĈTR
(∗)
i − ĈTR

(p)

i ; and (3)

Ground Truth, which uses CATE estimates assuming all impressions fall within the probabilistic region and

serves as our oracle.

We present our results in Table 4. We begin by focusing on the ATE estimates provided by all models.

The ground truth estimate for the ATE of the focal ad in the set of targeting profiles in our study is−0.01634,

which indicates that showing the focal ad results in 0.01634 lower CTR compared to the platform ad, on

average.18 Our algorithm’s ATE estimate is −0.01679, demonstrating its great performance in recovering

the true ATE. However, we find that benchmarks fail to correctly estimate the true ATE. Notably, we find that

Double ML is largely biased and even misses the sign of the ATE. The Ad Allocation Algorithm performs

better, producing an ATE estimate of−0.01860, but still misses the true value. The superior performance of

our algorithm compared to the scores from the ad allocation algorithm becomes even more apparent in the

second column of Table 4, where we measure the RMSE of the CATE estimates.

We then focus on the targeting performance and the economic gains from our algorithm using Gain(0.1),

which measures the gain from a targeted re-allocation of top 10% of impressions. Using the ground-truth

estimates, we find that re-allocating the top 10% results in a 0.00255 unit increase in CTR for a sample of

100,000 impressions—equivalent to a 10.89% increase, given the platform ad’s baseline CTR of 0.02338.

Re-allocation based on our algorithm’s estimated CATEs yields similar performance, with a 0.00253 unit

increase in CTR, corresponding to a 10.81% improvement over full allocation to the platform ad. In contrast,

targeting the top 10% of impressions using δ̂ values from the ad allocation algorithm leads to a smaller gain

of 0.00101, or 4.33%. The fourth column shows the Oracle Ratio of the gains from each model compared

to the ground truth and highlights the remarkable performance of our algorithm in recovering 99.24% of

gains. In Web Appendix E.6, we explore alternative re-allocation strategies and show that our algorithm

can deliver even greater gains. Overall, our findings underscore a key managerial insight: while algorithmic

decision-making improves outcomes, it often overlooks high-value opportunities in regions of deterministic
18To put this number in perspective, the CTR for the platform ad in our sample is 0.02338, so an ATE of −0.01634 translates to

a ratio of −0.01634/0.02338 = −0.6988, equivalent to a −69.88% lower CTR.
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Method ATE RMSECATE Gain(0.1) OracleRatio(0.1)

Proposed Algorithm −0.01679 0.00377 0.00253 99.24%
Double ML 0.00093 – – –
Ad Allocation Algorithm (δ̂) −0.0183 0.03711 0.00101 39.75%
Ground Truth −0.01634 0 0.00255 100%

Table 4. Performance of different models in terms of estimation and targeting.
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Figure 9. Performance of our algorithm with different number of ads in the CATE matrix

assignment. Managers can use pre-existing experimental data to construct CATE factors and recover these

missed opportunities.

To better understand the strong performance of our algorithm, we perform a simple analysis: we vary

the number of other ads in the CATE matrix. Our analysis in Table 4 uses 68 other ads. We first order the

ads and then progressively add 5 ads at a time to re-run our algorithm. We present the results from this

exercise in Figure 9. Figure 9a shows the performance of our algorithm in recovering the true ATE. The

dotted red line is the Double ML estimate, and the dashed black line is the ground truth estimate. We follow

the uncertainty quantification procedure in §5.2 and present the median estimate and the 95% confidence

intervals, using 100 draws for each case. As shown in Figure 9a, our algorithm performs better in terms of

both accuracy and precision as we include more ads. However, we notice that the performance stabilizes

after including only 35–40 ads. Figure 9b illustrates the same pattern for the targeting performance of our

algorithm. The value created by our algorithm stabilizes with around 40 ads, while adding more ads helps

reduce the uncertainty around the estimates.

We further examine the robustness of our algorithm by adding irrelevant ads. We randomly generate

CATE estimates for 20 pseudo-ads. Theoretically, adding independent columns to a matrix will increase the

rank of that matrix. As such, we expect our algorithm to learn the increased rank and tune out the irrelevant

columns added to the matrix. As shown in Web Appendix E.7, we find that the best rank approximation
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selected by our validation procedure is 34, and that our algorithm performs remarkably well as it effectively

ignores the information in these new columns. On the contrary, when we include only the set of 20 irrelevant

ads, we find that our algorithm fails to recover the true ATE, because the set of irrelevant ads does not provide

any useful information.

In summary, our analysis shows that our algorithm can effectively exploit similarities between ads to

overcome a severe case of overlap violation, where the Double ML estimator even misses the sign of the

true estimates. We stress that the applicability of our algorithm is context-specific. For example, if CATEs

are independent across ads, our algorithm cannot use any cross-study information that would be helpful

for its primary task. However, many empirical settings exhibit similarity patterns and correlation structures

akin to our problem, making our algorithm suitable for a wide range of applications. In Web Appendix

§E.8, we further investigate the correlation structure between CATE estimates in our study and demonstrate

that, despite similarities, these ads differ significantly based on their weights on various factors in our setting.

Furthermore, a key feature of our algorithm is that its parameters can be optimally set for each context. Thus,

one could specifically test whether the conditions required for our algorithm’s applicability are satisfied.

8 Conclusion

Digital platforms rely on algorithmic decision-making to deliver interventions to users at scale. A central

goal for both practitioners and academic researchers is to identify the causal effect of these interventions.

The gold standard for doing so is randomized experimentation. However, such experiments are often pro-

hibitively expensive, motivating the use of observational methods that leverage existing platform data with-

out incurring the costs of experimentation. We study this problem within the well-established potential

outcomes framework (Holland 1986). Observational studies typically rely on the assumption of strong ig-

norability of the treatment assignment, which includes two key components: unconfoundedness and overlap.

While much of the prior applied and methodological literature focused on the former, the latter received con-

siderably less attention. We show that, in digital platforms, it is often the overlap assumption that fails due

to the deterministic nature of algorithmic recommendations. We theoretically demonstrate that violations of

the overlap condition can significantly compromise the validity of observational studies. We quantify the

resulting bias and argue that such bias is likely to be substantial in most digital platform settings. We then

reformulate the identification challenge posed by the lack of overlap as a missing data problem and propose

a matrix completion approach, commonly used in such contexts, as a solution. Through a series of calibrated

simulations and empirical exercises, we show that if the platform observes multiple treatments for the same

units and the space of treatment effects is low-rank, it is possible to recover the true average treatment effect.

In summary, this paper makes several contributions to the literature. Methodologically, we provide a

comprehensive examination of the overlap assumption and offer a theoretical characterization of algorithmic

decision-making contexts in digital platforms. We introduce a novel machine learning approach that frames

the identification challenge as a missing data problem, combining heterogeneous treatment effect estima-

tion with matrix completion to recover treatment effects. From a substantive and practical perspective, we

highlight a critical but overlooked challenge for digital platforms: the violation of the overlap assumption.

We outline empirical contexts where this problem arises and demonstrate the value of our approach through
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calibrated simulations and real-world data, showing that it enables more effective targeting of interventions.

Our work has several managerial implications for digital platforms that use algorithmic decision-making

to allocate interventions. As discussed in §3, the use of algorithmic decision-making often leads to a viola-

tion of the overlap assumption, which can hinder managers from accurately estimating causal parameters at

both the population and individual levels. Our proposed algorithm provides a valuable tool for digital plat-

forms to address this challenge and enhance their personalized strategies. The primary application of our

algorithm is in online advertising, where ads are allocated through a combination of auctions and algorithms,

and the platform has only partial control over the assignment process. While design-based solutions such

as small-scale randomization are feasible in cases where the platform has full control over the assignment

policy (the first class of problems in §3), our algorithm still delivers substantial value by enabling platforms

to leverage their existing data from numerous interventions with imperfect randomization. We illustrate

this point in Web Appendix F by examining a simple case of the platform’s promotion targeting, where the

platform has full control over the assignment.

In particular, our algorithm creates value for managers across a wide range of settings where existing

data involve imperfect randomization due to factors such as experimentation costs or the influence of market

participants. Importantly, we emphasize that our algorithm is not a substitute for experimentation or A/B

testing. Rather, it serves as a complementary tool aimed at reducing experimentation costs. A particularly

useful application arises when a platform uses experimentation to construct the CATE matrix and reliably es-

timate its underlying factors. Using our algorithm with the knowledge of the underlying factors will further

allow the experimenter to reduce the experimentation cost. Even in settings where the cost of experimen-

tation is relatively low, our algorithm enables practitioners to better use existing databases suitable for our

application.
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Web Appendix
A Overview of State-of-the-Art Approaches to Estimate ATE

A.1 Model-based Approaches to Estimate ATE

There are many model-based approaches one could use to estimate ATE from observational data. The
traditional approach is to use a linear regression that projects the outcome on the treatment variable as well
as other controls and estimates the average treatment effect. These methods work well if the confoundedness
in the treatment assignment is captured by a linear combination of covariates. However, in many high-
dimensional settings, the assignment has more complex patterns, which makes linear controls inadequate
in accounting for observed confoundedness. Further, the relationship between other covariates and the
outcome can also follow a non-linear pattern. These limitations, in turn, attracted a growing body of work
that brings machine learning methods to causal inference in order to increase the flexibility and robustness
of model-based methods to estimate ATE (Belloni et al. 2014, Chernozhukov et al. 2018a). Many of these
methods are now considered state-of-the-art methods for estimating the ATE.

We present a general framework to study model-based approaches. Let µw(x) = E[Yi(w) | Xi = x]
denote the underlying population model for the conditional potential outcomes for any w. We can write:

Yi(w) = µ0(Xi) + τ∗(Xi)w + ϵi(w), (A.22)

where ϵi(w) denotes the structural error term for any value of the treatment w ∈ {0, 1}. Unconfoundedness
implies that E[ϵi(Wi) | Xi,Wi] = 0. We further define function m as the conditional mean function such
that m(x) = E[Y | X = x]. We can now write the following decomposition:

Yi −m(Xi) = (Wi − π(Xi)) τ
∗(Xi) + ϵi(Wi), (A.23)

which holds because m(Xi) = µ0(Xi) + τ∗(Xi)π(Xi). This decomposition – which is first proposed by
Robinson (1988) for estimating partially linear models – serves as a foundation for model-based approaches
to estimate ATE or CATE that use machine learning models for causal inference. The key insight is that we
can use machine learning models to flexibly learn nuisance functions m(Xi) and π(Xi), and then feed these
estimates into an objective function to estimate causal estimands. We can define this objective function as
follows:

τ∗(·) = argmin
τ
E

[
(Yi −m(Xi)− (Wi − π(Xi)) τ(Xi))

2
]
. (A.24)

The double machine learning (DML) approach estimates both nuisance functions using machine learning
models and then estimates the ATE using a version of the objective function above, where there is only one
τ(Xi) for the population (Chernozhukov et al. 2018a).

A.2 Model-free Approaches to Estimate ATE

We now discuss model-free approaches to estimate the ATE that directly use the realized outcomes without
modeling them. The foundation for these approaches is the idea of importance sampling proposed by Horvitz
and Thompson (1952) in their seminal paper. The idea is to weight each observation by its inverse propensity
score, which gives us the following estimator for the ATE:

τ̂IPS =
1

N

(
N∑
i=1

Yi

(
Wi

π(Xi)
− 1−Wi

1− π(Xi)

))
, (A.25)
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where the first term Wi/π(Xi) weights the observations that received the treatment by the inverse probability
of that assignment, and the second term (1−Wi)/(1−π(Xi)) weights the observations that did not receive
the treatment. This estimator estimates the average treatment effect by subtracting an estimate of what
would have happened if everyone had received the control from an estimate of what would have happened
if everyone had received the treatment. It is a model-free approach because we do not need any model of
the outcome to estimate our causal estimand.

In the absence of full overlap, a drawback of this approach becomes immediately apparent. For obser-
vations with deterministic assignment, the denominator in one of the terms is 0, which makes the overall
estimator undefined. The conventional solution is to use sample trimming, wherein we drop observations
with a deterministic assignment. As a result, this approach only relies on the αr fraction of observations
with the probabilistic assignment.

B Proofs for Propositions

B.1 Proof of Proposition 1

Proof. Let Ir denote the set of observations that have probabilistic assignment. We denote the total number
of these observations by Nr. From Chernozhukov et al. (2018a), we know that:

argmin
τ

1

Nr

∑
i∈Ir

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2 p→ τr. (A.26)

We now want to show that the RHS of Equation (A.26) is the same as what any methods optimizing Equation
(A.24) would estimate. We can write:

τ̂ = argmin
τ

1

N

N∑
i=1

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2

= argmin
τ

1

N

∑
i∈Ir

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2

+
∑
i/∈Ir

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2

= argmin
τ

1

N

∑
i∈Ir

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2 +

∑
i/∈Ir

(Yi −m(Xi))
2

= argmin
τ

1

N

∑
i∈Ir

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2

= argmin
τ

1

Nr

∑
i∈Ir

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2 ,

(A.27)

where the second line is a simple decomposition based on the observations with probabilistic and determin-
istic assignment, the fourth line is because Wi−π(Xi) = 0 for observations with deterministic assignment,
the fifth line drops the term

∑
i/∈Ir (Yi −m(Xi))

2 because it is invariant of τ , and the sixth line changes
1/N to 1/Nr because it is invariant of τ . Now if we combine the result of Equation (A.27) with that of
Equation (A.26), the proof is complete for DML.

We now turn to the IPS estimator. The proof is straightforward and directly follows from the fact that
we can only use non-deterministic propensity scores. As a result, we only focus on the observations in the
probabilistic region. Therefore, the proof directly follows Horvitz and Thompson (1952).

ii



B.2 Proof of Proposition 2

Proof. For the proof, we only show the first one, since the second one follows the same logic. We start by
proving the following lemma:

Lemma 3. We have E[1(π(Xi) = 1)τ(Xi)] = P (π(Xi) = 1)E[τ(Xi) | π(Xi) = 1].

For brevity in our proof, we first define Qi = 1(π(Xi) = 1). We can now write:

E[1(π(Xi) = 1)τ(Xi)] = E[Qiτ(Xi)]

= E[E[Qiτ(Xi) | Qi]]

= E[QiE[τ(Xi) | Qi]]

= P (Qi = 1)(1)E[τ(Xi) | Qi = 1] + P (Qi = 0)(0)E[τ(Xi) | Qi = 0]

= P (Qi = 1)E[τ(Xi) | Qi = 1]

= P (π(Xi) = 1)E[τ(Xi) | π(Xi) = 1]

(A.28)

Now, we use this lemma to prove that if τ(Xi) and belonging to the deterministic assignment region (i.e.,
1(π(Xi) = 1) are positively correlated, then we have τ1 ≥ τ∗. We can write:

τ1 = E[τ(Xi) | π(Xi) = 1]

=
P (π(Xi) = 1)E[τ(Xi) | π(Xi) = 1]

P (π(Xi) = 1)

=
E[1(π(Xi) = 1)τ(Xi)]

E[1(π(Xi) = 1)]

≥ E[1(π(Xi) = 1)]E[τ(Xi)]

E[1(π(Xi) = 1)]

= E[τ(Xi)]

= τ∗,

(A.29)

where the fourth line comes from the fact that the two variables are positively correlated.

C Supplementary Materials for the Proposed Algorithm

C.1 SoftImpute Algorithm

The SoftImpute algorithm is a matrix completion technique that is widely used to fill in missing values in
large datasets by exploiting low-rank structure in the data. The method was introduced as an efficient way
to handle incomplete data by iteratively approximating the missing entries of the matrix while maintaining
a low-rank approximation.

The algorithm is based on the concept of matrix factorization and is particularly useful when the under-
lying data matrix is assumed to have a low-rank structure, which means that much of the variation in the
data can be captured by a few latent factors. SoftImpute achieves this by using singular value thresholding
to shrink the singular values of the data matrix, thereby inducing a low-rank approximation. The algorithm
is defined as follows:

Let X ∈ RN×J be the data matrix with missing entries. The goal is to approximate X by a matrix M
of lower rank such that the missing values are imputed in a way that preserves the structure of the original
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data.The optimization problem solved by SoftImpute can be formulated as:

M̂ = argmin
M

1

2
∥W ⊙ (X−M)∥2F + λ∥M∥∗, (A.30)

where W ∈ {0, 1}N×J is an indicator matrix, with wij = 1 if xij is observed and wij = 0 otherwise,
⊙ denotes the element-wise product, ∥M∥∗ is the nuclear norm of the matrix M, which is the sum of its
singular values, λ is the regularization parameter that controls the trade-off between imputation accuracy
and the rank of the matrix. SoftImpute proceeds by iteratively solving the following steps:

Algorithm 2 SoftImpute Algorithm
1: Initialize the missing values in X with zeros or the column means to form M0.
2: while not converged do
3: Perform Singular Value Decomposition (SVD) on the current matrix estimate Mt:

Mt = UΣV⊤.

4: Apply soft-thresholding to the singular values Σ:

Σλ = max(Σ− λ, 0).

5: Update the matrix Mt+1 using the soft-thresholded singular values:

Mt+1 = UΣλV
⊤.

6: Replace the missing entries in X with the corresponding values from Mt+1.
7: end while

The algorithm iteratively reduces the objective function and converges when the change in the matrix M
between iterations is below a specified tolerance level. The regularization parameter λ controls the amount
of shrinkage applied to the singular values, which determines the rank of the resulting matrix. A larger λ
results in more aggressive shrinkage and a lower-rank approximation. There are a few key advantages in the
SoftImpute algorithm summarized as follows:
• Scalability: SoftImpute can efficiently handle large matrices with many missing entries by exploiting

the low-rank structure of the data.
• Flexibility: The nuclear norm regularization helps in controlling overfitting and provides smooth low-

rank approximations.
• Simplicity: The algorithm is easy to implement and can be combined with other methods for improved

imputation accuracy.

C.2 Validation Procedure

In this section, we present step-by-step details on our validation procedure to set the hyper-parameters
for the SoftImpute algorithm. Suppose we have an incomplete matrix T[n×m]. As discussed in §5.2, the
SoftImpute algorithm requires two parameters: (1) regularization parameter λ that controls the rank of
estimated matrix by regularizing the nuclear norm of the matrix, and (2) maximum rank, which is the
maximum allowable rank of the matrix. In our setting, matrix F[n×m] determines the missingness pattern in
matrix T[n×m]. We further define Ω(T ) as the set of (i, j) pairs that are observed in matrix T[n×m], that is,
Ω(T ) = {(i, j) | Fi,j = 1}. We take the following steps to tune the hyper-parameters of the model.
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• Set the maximum rank based on the domain knowledge. If there is no prior information is available, set
the maximum rank as min(n,m), which is the maximum possible rank of matrix T[n×m].

• Let T̃[n×m] denote the following matrix:

T̃i,j =

{
Ti,j if (i, j) ∈ Ω(T )
0 if (i, j) /∈ Ω(T )

(A.31)

Use Singular Value Decomposition and set λmax as the maximum singular value.
• Create a grid of Λ ranging from zero to λmax. Without loss of generality, let λ1 < λ2 < · · · < λmax.
• Split the set of observed entries Ω(T ) into two groups Ωtrain(T ) and Ωvalidation(T ), such that Ωtrain(T )∪
Ωvalidation(T ) = Ω(T ) and Ωtrain(T )∩Ωvalidation(T ) = ∅, and Ωvalidation(T ) contains a random α fraction
of all observed entries. In our applications, we set α = 0.1.
• Start with λ1 and run the SoftImpute algorithm on Ttrain. Record the model output as T̂λ1 and its perfor-

mance on the validation set of entries Ωvalidation(T ). For better computational performance, warm start
the model with λt with the model in the previous step T̂λt−1 . Record the validation performance for all
values of λ ∈ Λ.
• Select the best-performing λ∗ based on the performance on the validation set as follows:

λ∗ = argmin
λ∈Λ
Lvalidation(T̂λ)

Please note that the loss function L can be anything based on the researcher’s objective. A conventional
choice is the RMSE of estimated entries in the validation set.

C.3 Uncertainty Quantification

As discussed in §5.2, we use re-sampling methods to quantify uncertainty in our estimates, because we do
not want to assume missingness at random, which is generally one of the assumptions needed for analytical
derivations of entry-wise estimation variance. The idea in our re-sampling method is to use the uncertainty
in CATE estimates and build a new incomplete matrix in each instance and apply our algorithm to complete
the matrix. Let Θ̂j(·) denote the distribution of estimated CATE parameters for study j. The details of our
procedure are presented below:
• Step 1: Draw θ̃j ∼ Θ̂j(·) for each study j.
• Step 2: Build an incomplete CATE matrix T̃ incomplete as follows:

T̃ incomplete
i,j =

{
τ̂ (j)(Xi; θ̃j) ifFi,j = 1

? ifFi,j = 0
(A.32)

This approach ensures that any perturbation in drawn parameters affect all the entries in a single col-
umn. Approaches that rely on independent entry-wise draws ignore the within-study dependence, so our
procedure is advantageous.
• Step 3: Complete CATE using the same matrix completion procedure in Algorithm 1. Define the com-

plete matrix as T̃ complete.
• Step 4: Repeat this process B times and build confidence intervals for entries.

C.4 Intuition Behind the Low-Rank Assumption

More generally, we can view the low-rank assumption in our setting through the structure of the CATE
matrix. Let XN×D denote the covariate matrix where each row represents a user and each column represents
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a covariate. The CATE from treatment j for unit i is τ (j)(Xi), which is a function of the covariates. For
each treatment j, there is a D-dimensional vector of coefficients β(j) that determine the CATE value such
that τ (j)(Xi) = β(j)XT

i . This linear approximation is reasonable as D can be large. Now, we can write the
CATE matrix T as follows:

T = XBT , (A.33)

where B is a J×D matrix where each column is the vector of coefficients for CATE for a specific treatment.
For the low-rank assumption to be satisfied, we need matrix B to be low-rank. If the studies have similar
characteristics, we expect weights in each row of B to be correlated, thereby making the matrix low-rank.
Suppose there are two matrices UJ×R and VD×R such that B = UV T . In this case, T = XV UT , where
XV maps the high-dimensional covariates into R factors, and U contains the weights for these factors in
the different studies.

Apart from structural reasons for the suitability of low-rank assumption in the context of digital plat-
forms, the insights from the prior literature suggest that the low-rank assumption performs remarkably well
in a wide range of domains, especially when large-scale matrices are available. This insight is formally char-
acterized in Udell and Townsend (2019) who show that under general conditions that the function generating
the high dimensional N × J matrix is analytic piece-wise, the rank grows as O(log(N + J)).

D Supplementary Materials for the Calibrated Simulation

D.1 Proof for Lemma 2

Proof. We first calculate the probability of each ad a winning an impression. For each ad a such that
a < Ar, we use the pigeonhole principle and show that the probability of a winning an impression is 0,
because there is always one ad among Ar selected ones with a higher bid that a. Now, if a ≥ Ar, we first
need a to be selected as one of Ar ads, which has a probability of Ar/Ai. Conditional on a being selected,
the probability that a is the highest bid is the probability that all of Ar − 1 ads are selected from all a − 1
ones with bids lower than a. We now this probability is equal the number of combinations of Ar − 1 from
a − 1, divided by all possible size Ar − 1 combinations from the remaining ads, which is the number of
combinations of Ar − 1 from Ai− 1. As such, the probability of ad a ≥ Ar winning an impression is given
as follows: (

Ar

A

)(( a−1
Ar−1

)(
Ai−1
Ar−1

)) .

Using the equation above, we can write the probability of any a winning as follows:

Pr(awins an impression) = 1(a ≥ Ar)
Ar

(
a−1
Ar−1

)
A
(
Ai−1
Ar−1

) (A.34)

Now, we can calculate the probability of a winning at least one of Ti impressions. We can write:

Pr(awins at least one impression) = 1− Pr(awins no impression)

= 1− (1− Pr(awins an impression))Ti

= 1−

(
1− 1(a ≥ Ar)

Ar

(
a−1
Ar−1

)
A
(
Ai−1
Ar−1

) )Ti
(A.35)
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D.2 Simulation Details

In this section, we present the details of our calibrated simulation exercise. We first define a few prelimi-
naries. As described in §6, in our simulation, we have N = 50, 000 and A = 100. We define the covariate
matrix as XN×D where D is the dimensionality of the covariate space. Elements in X come from a Normal
distribution N (0, σx), where we set σx = 0.5. We present a step-by-step procedure as follows:
• Defining the base for CATE matrix: The base for the underlying CATE matrix is given by the following

equation:
T̃ = XBT , (A.36)

where BJ×D is the coefficient matrix that is low-rank in the following way:

B = UV T , (A.37)

where UJ×R and VD×R are two matrices that make matrix B rank-R. All the entries in these matrices
come from N (0, σu) and N (0, σv). We set σu = 0.5 and σv = 0.5. To control the variance in CATE
within studies, one could vary σv. Since both U and V are mean zero in each element, the mean of each
column in matrix T̃ is equal to 0. We now sample from the lift deciles provided from Gordon et al.
(2022) to determine the ATE for each column and add the ATE to all entries in that column. This gives
us the CATE matrix T[N×A].
• Defining the bid matrix: The bid matrix is something that is imperfectly correlated with the CATE matrix
T[N×A]. We define this matrix as B[N×A], such that the correlation between each column a in T and B
is equal to 0.5.
• Determining propensity scores: Based on the bids defined at the user-level in the previous step and

Lemma 2, we calculate each user-ad pair’s propensity score. This defines the propensity matrix Π[N×A]

in our study.
• Defining the nuisance matrix: The nuisance matrix G[N×A] determines the relationship between covari-

ates and the outcome. We define the nuisance matrix as a product of XN×D and a weight matrix GA×D

as follows:
G = XGT + 1, (A.38)

where entries in the weight matrix GA×D all come from N (0, 0.5). The addition of the term 1 is only
to ensure that reported lifts are the same as ATEs.

We can now use all these primitives to simulate the data for our calibrated simulation exercise:
• Step 1: We use Π to simulate W

(a)
i for each unit i in each ad a.

• Step 2: With the treatment variable realized, we can simulate the outcome as follows:

Y
(a)
i = Gi,a +W

(a)
i Ti,a + ϵi,a, (A.39)

where Gi,a is the nuisance part of the outcome, W (a)
i Ti,a is the treatment effect given (if any), and

ϵi,a ∼ N (0, 0.5).

• Step 3: For each study a, we can construct data set D̃(a) = {Y (a)
i ,W

(a)
i , Xi, π

(a)(Xi)}. The union of
D̃(a) for all a’s will give us the Dsim

T .

D.3 Relationship Between Propensity Scores and CATE

Next, we examine whether the lack of overlap induced by algorithmic ad allocation poses challenges for ATE
estimation using observational data. As discussed in earlier in §4.4, if the CATE for the probabilistic region is
different from ATE, all state-of-the-art methods will fail to recover the true ATE. We define the probabilistic
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Figure A.1. Treatment effects for different regions of the data

region in our data in two ways: (1) probabilistic region where the propensity score is greater than 0 and
satisfies the weak overlap assumption, and (2) practically probabilistic region where the propensity score
is greater than η = 0.01 and satisfies the strict overlap assumption. We define the practically probabilistic
region because this is the region that empirical models can effectively use to learn treatment effect estimands.
We then use the true CATE matrix and calculate the CATE for each region. Figure A.1 shows the true CATEs
for these three regions. As shown in this figure, the CATE for both probabilistic regions is higher than the
treatment effect for the population. This indicates that user-ad pairs with lower CATEs are systematically
more likely to violate the overlap assumption. In particular, the correlation between CATE and propensity
scores for all user-ad pairs is 0.37, which highlights the challenge posed on the observational methods to
recover treatment effect estimands: the overlap-satisfying part of the data selected.

D.4 Visualization of CATE Distributions for Different Assignment Regions

A major finding in §6.3.3 is that our algorithm performs remarkably well in finding the good targeting op-
portunities. This goes against the argument that the deterministic regions only involve opportunities whose
assignment is obvious given their value. That is, the deterministic assignment region only involves high-
value opportunities that the manager never wants to miss, whereas the deterministic no-assignment region
only includes poor-performing units that the manager never wants to target. We visualize this insight in
Figure A.2 by showing the true and estimated CATE distributions of three different assignment regions: (1)
practically deterministic no-assignment region that has a propensity score below 0.1, whose CATE is infea-
sible to be estimated using conventional methods, (2) probabilistic assignment region that has a propensity
score between 0.1 and 0.9, whose CATE can be estimated using consistent CATE estimators, and (3) prac-
tically deterministic assignment region that has a propensity score above 0.9 and belongs to the infeasible
region for CATE estimation. Please note all presented results are qualitatively the same if we use different
trimming thresholds, such as 0.01, 0.05 or 0.20.

Figure A.2a shows the distributions of true CATE values different assignment regions. The dashed
line in Figure A.2a is the targeting threshold for the top 10% of units. As shown in this figure, there are
instances in the deterministic no-assignment region that are used for targeting, whereas there are instances
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Figure A.2. Distributions of true and estimated CATE for different assignment regions

in the deterministic assignment region that should not be used in targeting. The same pattern holds when
we use the completed CATE based on our algorithm, as illustrated in Figure A.2b. Although the mean of
the CATE distribution is lower for the deterministic no-assignment region, there are still numerous targeting
opportunities in that region. The gains of our algorithm come from correctly detecting these targeting
opportunities. It is worth clarifying that the longer tail of deterministic no-assignment and probabilistic
assignment is due to the fact that there are substantially more instances in these regions in our simulation
exercise.

D.5 Robustness Checks and Sensitivity Analysis

D.5.1 Robustness to Alternative Auctions
In our main analysis, we consider a combinatorial case where the platform draws a number of ads at random
from the inventory to include in the auction. The rationale for this form of random bidder sub-sampling is
the presence of advertisers’ budget-pacing strategies and computational bottlenecks of the platform (Kim
et al. 2024). Although our setup with bidder sub-sampling captures the essence of this rationale, it may
appear as a stylized abstraction made for theoretical convenience. To show that our results are not driven by
the specifics of the imposed structure on bidder sub-sampling, we relax the assumption on the fixed size of
Ar and consider an alternative auction environment wherein each ad’s availability depends on their budget
pacing decision and the auction’s reserve pricing. As such, each ad a has a budget-pacing rule that translates
to a probabilistic availability of ad a for the pa fraction of impressions. The platform sets an optimal reserve
price brp for all impressions based on the distribution of bids in a direct revelation mechanism, according to
Myerson (1981), so it satisfies the following condition:

brp −
1− F (brp)

f(brp)
= 0, (A.40)
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where F (·) is the distribution of valuations (bids in truthful mechanisms) and f(·) is its density function.
With the setting defined, we can write the following lemma about the propensity scores:

Lemma 4. Suppose that each bidder a submits bid bi,a for each one of user i’s impressions, such that
bi,1 ≤ bi,2 ≤ · · · ≤ bi,A, without loss of generality. For user i, ad a’s propensity score is determined as
follows:

π
(a)
i = 1−

(
1− 1(bi,a ≥ brp)pa

∏
a′>a

(1− pa′)

)Ti

, (A.41)

where Ti is the total number of impressions shown to user i.

Proof. We start by measuring the probability that ad a wins an impression. For this event to happen, we
need three independent events to happen at the same time: (1) we need ad a’s bid to be greater than or equal
to the reserve price, that is, bi,a ≥ brp, (2) we need ad a to participate in the impression, which happens with
probability pa, and (3) we need no other ad with a higher bid to participate in the auction for that impression,
which is equal to

∏
a′>a(1 − pa′) that measures the probability that no ad a′ with a higher bid than ad a

participates in the auction. As such, we can write:

Pr(a wins an impression) = 1(bi,a ≥ brp)pa
∏
a′>a

(1− pa′) (A.42)

Now, we can calculate the probability of a winning at least one of Ti impressions as follows:

Pr(awins at least one impression) = 1− Pr(awins no impression)

= 1− (1− Pr(awins an impression))Ti

= 1−

(
1− 1(bi,a ≥ brp)pa

∏
a′>a

(1− pa′)

)Ti
(A.43)

We now generate the data with the same primitives as the simulation in §6.3. For simplicity, we use
pa = 0.1 for all ads. We begin by showing the empirical CDF of the propensity scores across ads. Figure
A.3 shows an empirical CDF analogous to the one in Figure 4. As shown in Figure A.3a, the propensity
scores for the vast majority of impression-ad pairs is very small. When we zoom in Figure A.3b, we find
that nearly 70% of these impression-ad pairs have propensity scores lower than 0.05, with a sizable portion
of these pairs being exactly at 0. Together, these results suggest that the alternative ad allocation mechanism
generates similar patterns to the one used in the main text.

We then focus on the performance of our algorithm when applied to this example. We present the
results in Figure A.4. As shown in this figure, the conventional methods like Double ML are largely bi-
ased in estimating ATE. However, our algorithm does a remarkable job in recovering the treatment effect
estimates. In particular, we find that the RMSE for ATE and CATE estimates are 0.148 and 3.891, respec-
tively. When evaluating the gains from our algorithm, we find that OracleRatio(0.1) for our algorithm
is 0.985, implying that targeting the top 10% of impressions based on our algorithm recovers 98.5% of the
first-best performance. In summary, our results demonstrate the robustness of our algorithm to alternative
ad allocation mechanism that relaxes the fixed size of bidder sub-sampling.
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Figure A.3. Empirical CDF of the propensity scores for user-ad pairs in alternative ad allocation mechanism.
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Figure A.4. The performance of the proposed algorithm and Double ML in recovering ATE in alternative
ad allocation mechanism.

D.5.2 Sensitivity Analysis
In this section, we run different sensitivity analysis for our main simulation to find the boundary conditions
of the algorithm. We start with varying Ar, such that it becomes a larger share of the total number of ads.
We know that in this situation, the assignment will become more deterministic, as more ads with lower
bids will be assigned to the deterministic no-assignment region. The results of this simulation exercise are
presented in the first panel in Table A1. We expect to observe a deterioration in the performance of our
algorithm as Ar increases. In terms of ATE estimation accuracy, we find that the performance gets worse as
we increase Ar from 10 to 50, but the RMSE reduces for values of Ar higher than 50. The reason for this
pattern is that for Ar > 50, a tiny fraction of entries in the matrix are in the feasible region (less than 5%)
and the matrix completion algorithm basically returns values closer to zero for imputed entries. As such, the
ATE across studies becomes a flat line close to zero, that incidentally performs well in terms of RMSEATE,
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although it has no discriminative power. The poor performance of our algorithm with higher values of Ar is
better demonstrated by the measures of targeting performance. Together, we conclude that extreme cases of
deterministic pattern is a boundary condition for our algorithm, as there will be very limited signal in these
cases for the matrix completion algorithm.

In the second panel of Table A1, we vary the rank of the underlying CATE matrix from 5 to 50. Naturally,
we expect a poorer performance as we increase the matrix rank, because the algorithm does not have enough
degrees of freedom for recovering a high-rank decomposition. As expected, the performance gets worse as
we increase the rank of the underlying CATE matrix. However, we note that even in high-rank scenarios,
the algorithm substantially outperforms the benchmarks. This is because the information in observed entries
transfers valuable signal to missing entries of the matrix.

In the third panel, we vary the noise of the CATE values within each study through the parameter σv
defined in Web Appendix D.2. We find that the RMSE measures increase with the CATE variance, which is
expected as the target is more noisy. We further find that the average gains from targeting increases as we
increase the variance of CATE. This is also expected because sampling from the top 10% is more valuable
if the distribution has higher variance, holding the mean fixed. Interestingly, we find the oracle ratio to be
stable across different noise levels of CATE values. This suggests that the two forces – lower estimation
accuracy and higher value of targeting – cancel each other out.

Lastly, in the fourth panel, we vary the correlation between bid and CATE values to see how our al-
gorithm performs with varying levels of imperfect linkage between bids and CATEs. We find a stable and
strong performance by our algorithm across all cases. A few points are worth noting in our results. First,
when the correlation between bid and CATE is weak, the deterministic assignment patterns create less of an
issue, which makes the conventional methods like DML perform better, as the GATE for the probabilistic
region is close to the ATE for the population. However, even in those settings, our algorithm performs sub-
stantially better, highlighting its power in learning parameters across studies. Second, we find that even in
the case with a 0.9 correlation between bid and CATE values, the targeting performance of our algorithm
remains higher than that of the targeting based on bids, as shown in the last column of the table. This finding
is important because it suggests even in settings where advertisers have near perfect signal about the CATE,
our algorithm is able to offer significant value.
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Initial Parameter Algorithm Performance Benchmark Performance

RMSEATE RMSECATE Gain(0.1) OracleRatio(0.1) RMSEDML
ATE OracleRatioBid

(0.1)

Panel 1: Varying bidder-subsampling parameter Ar

Ar = 10 0.153 1.178 0.474 0.981 1.969 0.525
Ar = 20 0.344 1.439 0.467 0.926 2.179 0.524
Ar = 30 0.594 1.830 0.407 0.834 2.187 0.528
Ar = 40 0.650 2.068 0.349 0.751 2.187 0.522
Ar = 50 0.768 2.494 0.338 0.663 2.474 0.527
Ar = 60 0.690 2.616 0.304 0.600 2.557 0.522
Ar = 70 0.611 2.698 0.271 0.528 2.593 0.525
Ar = 80 0.555 2.729 0.222 0.442 2.640 0.526
Ar = 90 0.355 2.670 0.133 0.277 2.641 0.523

Panel 2: Varying the rank of the CATE matrix

Rank = 5 0.073 0.879 0.369 0.987 1.524 0.534
Rank = 10 0.153 1.178 0.474 0.981 1.969 0.525
Rank = 15 0.268 1.443 0.566 0.970 2.391 0.524
Rank = 20 0.483 1.870 0.681 0.956 2.938 0.517
Rank = 25 0.826 2.341 0.748 0.936 3.307 0.513
Rank = 30 1.056 2.753 0.786 0.920 3.533 0.516
Rank = 35 1.264 3.133 0.830 0.908 3.745 0.517
Rank = 40 1.608 3.610 0.876 0.894 4.050 0.515
Rank = 45 1.809 3.980 0.905 0.883 4.298 0.509
Rank = 50 2.011 4.399 0.973 0.877 4.584 0.510

Panel 3: Varying the variance of CATE within study

σv = 0.25 0.071 0.609 0.254 0.979 1.009 0.545
σv = 0.50 0.153 1.178 0.474 0.981 1.969 0.525
σv = 0.75 0.236 1.790 0.738 0.981 3.138 0.518
σv = 1.00 0.319 2.384 0.961 0.981 4.137 0.512
σv = 1.25 0.379 2.862 1.163 0.980 5.051 0.509
σv = 1.50 0.419 3.642 1.457 0.981 6.333 0.507
σv = 1.75 0.473 4.176 1.690 0.981 7.312 0.507
σv = 2.00 0.553 4.875 1.948 0.980 8.444 0.506
σv = 2.25 0.609 5.506 2.185 0.980 9.542 0.506
σv = 2.50 0.609 6.175 2.507 0.981 10.928 0.504

Panel 4: Varying the correlation between bid and CATE

ρ(b, τ) = 0.1 0.094 1.271 0.463 0.983 0.409 0.131
ρ(b, τ) = 0.2 0.081 1.391 0.515 0.983 0.873 0.237
ρ(b, τ) = 0.3 0.092 1.252 0.470 0.982 1.209 0.337
ρ(b, τ) = 0.4 0.119 1.307 0.523 0.982 1.737 0.435
ρ(b, τ) = 0.5 0.153 1.178 0.474 0.981 1.969 0.525
ρ(b, τ) = 0.6 0.210 1.123 0.477 0.979 2.354 0.623
ρ(b, τ) = 0.7 0.315 1.153 0.499 0.975 2.847 0.713
ρ(b, τ) = 0.8 0.496 1.105 0.484 0.973 3.071 0.811
ρ(b, τ) = 0.9 0.907 1.402 0.503 0.963 3.521 0.906

Table A1. Sensitivity analysis based on different initial parameters for the data-generating process.
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E Supplementary Materials for the Empirical Validation Exercise

E.1 Complete List of Features Used for Targeting Profiles

For each impression or targeting profile, we observe the following variables: (1) Latitude, (2) Longitude,
(3) Province, (4) Smartphone Brand, (5) Connectivity Type, (6)
• Latitude
• Longitude
• Province
• Smartphone Brand
• Connectivity Type
• Mobile Service Provider
• The total number of impressions the user has seen prior to the current session
• The total number of clicks user the user has made prior to the current session
• The total number of impressions the user has seen prior to the current session in the top app
• The total number of clicks user the user has made prior to the current session in the top app
• The number of times the user has seen at exposure number t in prior sessions
• The number of times the user has clicked at exposure number t in prior sessions
• The length of last session (in number of exposures) that the user was exposed to prior to the current

session
• The average length of sessions (in number of exposures) that the user was exposed to prior to the current

session
• The gap or free time (in minutes) the user has had between her last session and the current session
• The average gap or free time (in minutes) the user has had between any two consecutive prior sessions
• The total number of distinct ads that the user has seen prior to the current session
• The Gini-Simpson index for ads that the user has seen prior to the current session
• The Shannon entropy of ad frequencies that the user has seen prior to the current session
• The total number of impressions the user has seen in the current session
• The total number of clicks user the user has made in the current session
• The total number of distinct ads that the user has seen within the current session
• The total number of consecutive changes of ads the user has experience in the current session
• The Gini-Simpson index for ads that the user has seen in the current session
• The Shannon entropy of ad frequencies that the user has seen in the current session

E.2 Selection of Ads

As discussed in §7.2.4, we include ads that have at least 10,000 impressions to ensure that we have sufficient
statistical power for CATE estimation. As such, we select 68 ads other than the focal ad and the platform
ad. Figure A.5 shows the cumulative share of all impressions allocated to top ads. Figure A.5a visualizes
these cumulative shares for all ads, whereas Figure A.5b zooms into the top 70 that are used in our study.
Notably, these 70 ads generate 94% of all impressions in our main sample.

E.3 Missingness Patterns Induced by Deterministic Assignment

We define a CATE matrix that has 100,000 rows and 69 columns, corresponding to 69 ads. Although all
impressions satisfy the overlap assumption for the focal ad, some impressions may violate this assumption
and belong to the deterministic region for some ads. To ensure the accuracy of our CATE estimates for
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Figure A.5. Cumulative share of impressions generated by top K ads

other ads, we filter impression-ad pairs that violate the overlap assumption. We visualize the missingness
pattern induced by overlap violation in Figure A.6 for a small sub-sample of size 100 from our CATE
matrix, where the feasible regions are shown with green and the infeasible entries are shown in blank. As
shown in this figure, some ads are entirely available for all impressions, whereas other ads have substantially
sparser feasibility patterns, reflecting the practical setting where algorithmic decision-making leads to both
probabilistic and deterministic assignment regions.

E.4 Details of CATE Estimation

As discussed in §7.2.4, we use a separate sample for each ad to estimate CATEs. For each ad a, the sample
we use for CATE estimation must satisfy the fundamental causal inference assumptions: (1) SUTVA, (2)
overlap, and (3) unconfoundedness. In our setting, we assume SUTVA as possibility of interference be-
tween users based on treatment assignment is reasonably low. We ensure overlap assumption is satisfied by
selecting impressions where both ad a and the platform ad are participating the its corresponding auction.
Since the auction is probabilistic, this ensures that all participating ads will have a non-zero propensity of
winning the auction. For the unconfoundedness assumption, we rely on the quasi-proportional auction used
to allocated ads: we know that for the sample of impressions awarded to either ad a or the platform ad where
both ads are eligible to be shown, the propensity scores will be proportional to these ads’ quality-adjusted
bids. In particular, what gives us further estimation stability is the persistence of this proportionality due to
a lack of bid-changing in our data, which makes the propensity fixed across impressions. We present the
steps in CATE estimation and forming the CATE matrix as follows:
• For any non-focal ad a, we draw a sample of all impressions that are allocated to either ad a or the

platform ad, conditional on both being eligible for these impressions. This gives us a sample of treated
and control impressions for each ad a. We denote the size of this sample by Na. Given the varying
frequency of ads shown in Figure A.5, we observe significant heterogeneity in Na, with minimum,
median and maximum being 12,591, 86,335, and 1,616,640 impressions. To reduce the computational
burden, if Na > 100, 000, we draw a random sample of size 100,000 impressions for CATE estimation.
We denote the set of impressions for each ad a as Ia. For the focal ad, we use the sample of 100,000
impressions (targeting profiles) illustrated in Figure 6 used for the CATE matrix.
• For any ad a, we use the sample of impressions Ia to estimate CATE using R-learner with XGBoost.

Let W (a)
i denote the binary variable that takes the value 1 when the ad a is shown and the value 0 when
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the platform ad is shown. We write the R-loss objective function as follows:

τ̂ (a)(·) = argmin
τ∈H

∑
i∈Ia

((
Y

(a)
i − m̂

−ka(i)
xgb (Xi)

)
−
(
W

(a)
i − ê

−ka(i)
xgb (Xi)

)
τ (a)(Xi)

)2
+ λΩH(τ),

(A.44)
where m̂

−ka(i)
xgb (·) and ê

−ka(i)
xgb (·) are the cross-fitted nuisance functions for E[Y (a)

i | Xi] and E[W (a)
i |

Xi] using XGBoost as the machine learning method, respectively, and the superscript −ka(i) denotes
that the fold containing observation i was not used in learning the predictive model for observation i,
and ΩH(τ) denote the complexity of function τ ∈ H that we want to regularize using the regularization
parameter λ.
• Once we estimate the CATE function τ̂ (a)(·) for each ad a, we predict CATE for entries in the CATE

matrix. As such, the input for each entry in row i is the targeting profile in impression i, denoted by Xi.
It is worth emphasizing that although all the impressions in the CATE matrix are allocated to either the
focal ad or the platform ad, we can still consistently estimate the CATE for other ads, as long as though
ads could have been shown (non-zero propensity score) in an impression.
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Method Gain+ OracleRatio+

Proposed Algorithm 0.00296 98.80%

Ad Allocation Algorithm (δ̂) 0.00015 4.92%
Ground Truth 0.00230 100.00%

Table A2. Targeting performance of different models when re-allocating impressions based on the positivity
of CATE estimates

E.5 Algorithmic Ad Allocation: Distribution of δ̂

Figure A.7 shows the distribution of δ̂ to induce the missingness pattern in the focal ad, as illustrated in
§7.4.1. As shown in this figure, the majority of CTR estimates predict a lower value for the focal ad com-
pared to the platform ad. However, there are some values in the probabilistic range [−0.005, 0.005] that
induce some local randomization in ad allocation. We find that 69.7% are in the deterministic no-assignment
region and 39.3% of impressions are in the probabilistic assignment region. Our algorithm can only use the
ones in the probabilistic region to impute the ones in the deterministic region.

E.6 Alternative Form of Personalized Re-allocation

In §7.4.2, we focus on re-allocating impressions to only top 10% of impressions. As an alternative approach
in this section, we focus on another form of documenting gains from our algorithm: instead of top 10% re-
allocation, we re-allocate to positive CATE estimates under each model, a common approach in developing
personalized policies. We denote this metric by Gain+ and present the results for it in Table A2. Our
results from this exercise show even greater gains from using our algorithm. We find that the gains are
higher for both our proposed algorithm and the ground truth because they can re-allocate more than 10% of
impressions. The reason for the poor performance of the ad allocation algorithm is that the estimates of δ̂
are largely negative, so less than 10% of them are selected for re-allocation.
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Method ATE RMSECATE Gain(0.1) OracleRatio(0.1)

Proposed Algorithm (Only 68 Original Ads) −0.01679 0.00377 0.00253 99.24%
Proposed Algorithm (68 Original Ads + 20 Irrelevant Ads) −0.01639 0.00424 0.00250 98.10%
Proposed Algorithm (Only 20 Irrelevant Ads) 0.00093 0.03741 −0.00158 −62.23%
Ground Truth −0.01634 0 0.00255 100%

Table A3. Performance of our proposed algorithm when adding irrelevant ads.

E.7 Inclusion of Irrelevant Ads

The main idea behind our algorithm is using the information across studies to impute CATE for the overlap-
violating or missing entries. In our main analysis, we find that our algorithm is able to exploit the information
across studies and accurately impute entries. In this section, we include irrelevant columns in the CATE
matrix to see how it affects the performance of our algorithm. Theoretically, we know that if we concatenate
two matrices of rank r1 and r2, the rank of the combined matrix is at most r1 + r2. As such, we expect our
matrix completion algorithm to learn the new rank of the combined matrix. In particular, our algorithm can
effectively ignore irrelevant information. To test that, we create 20 random-generated columns all coming
from standard Normal distribution and add these columns to the CATE matrix. We then run our algorithm in
two settings with (1) CATE matrix containing all 68 original ads as well as 20 irrelevant ads, and (2) CATE
matrix only containing the irrelevant ads. We find the best-performing matrix decompositions based on the
validation procedure. The best-performing matrix for the first scenario with both original ads and irrelevant
ads is of rank 34, whereas the rank for the matrix with irrelevant ads is 19. This suggests that our algorithm
can verify the increased rank in a data-driven manner.

We present the results in Table A3. As shown in this table, adding 20 irrelevant ads does not have a
major impact on the algorithm. We see a slightly better ATE estimation performance and a slightly worse
CATE estimation and targeting performance compared to the algorithm with only 68 original ads. On the
contrary, when we only include the 20 irrelevant ads, the algorithm fails in recovering the causal parameters
and performs poorly in targeting. Overall, our results highlight an important feature of matrix completion
algorithms, which is their ability in ignoring irrelvant information.

E.8 Similarities and Differences Among the Ads in the CATE Matrix

One of the requirements for our algorithm to work is the commonality among studies, which satisfies the
low-rank assumption. That is, there are fewer factors that collectively explain CATE in a larger number
of studies. In our study, we select a set of mobile in-app ads to empirically test whether the low-rank
assumption is satisfied and evaluate the performance of our algorithm. Although our ad sampling procedure
is agnostic to the commonality between ads, the strong performance of our algorithm suggests that the 69
ads in our CATE matrix share some common factors. In this section, we aim to understand the correlation
structure in the CATE matrix and the distinctiveness each ad has. We first present the correlation matrix in
Figure A.8a. As shown in this figure, many pairs of ads exhibit high correlations in both directions, though
most observed correlations are positive. Figure A.8a automatically cluster groups of ads that have more
similar pairwise correlations. Although we do not have the ad content data, one could speculate that ads
clustered together likely belong to the same category, such as mobile gaming app, or health. The plus sign
in this figure shows the focal ad, which has a positive correlation with 51 ads, and a negative one with 17
ads.
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Figure A.8. Similarities and differences among ads in the CATE matrix

Although the correlation matrix in Figure A.8a illustrates the presence of a correlation structure between
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ads, it also shows major differences between ads. To further examine the distinctiveness of ads, we visualize
the weights each ad has for the CATE factors. To do so, we take the CATE matrix completed by our
algorithm and perform Principal Component Analysis (PCA). We then visualize the factor loadings for the
23 factors in our study in Figure A.8b, using a heatmap.19 As before, we use a plus sign to refer to the focal
ad. Figure A.8b illustrates how each ad relies distinctive factors, highlighting the differences among ads. In
summary, both figures in Figure A.8 suggest that ads in our study are not unusually similar, although the
commonalities among them satisfies the low-rank assumption and allows our model to perform well.

F Settings with the Platform’s Full Control over the Assignment

As discussed earlier in §3 and §8, although a key application of our algorithm is advertising auctions and
the mixture of probabilistic and deterministic assignment patterns created by these auctions, our algorithm
can be applied more broadly to cases where the platform has full control over the assignment policy. In this
section, we study the application of our algorithm in one such scenario where a platform uses algorithmic
scores to assign users to promotions. As highlighted in Figure 1a, platforms often use cutoff-based decision-
making where the unit is assigned to a treatment if its algorithmic score is above a certain threshold. For
example, if the algorithmic score for user responsiveness to a promotion is above a certain number, the
platform assigns that user to the promotion. In these setting, the randomness in intervention assignment
comes from the uncertainty in algorithmic scores.

Consider a promotion targeting problem where there are N users indexed by subscript i and J different
promotions indexed by j. For any pair of user i and promotion j, the platform measures an algorithmic
score Si,j , which demonstrates the responsiveness of user i to promotion j. As discussed in §3, this score
has residual uncertainty, which we capture with an additive term ωi,j that comes from a distribution F (·),
such that Si,j + ωi,j characterizes the all possibilities in the full posterior distribution of the algorithmic
score. If the algorithmic score Si,j is greater than a threshold c, then promotion j will be assigned to user i.
As such, the propensity score π

(j)
i can be determined as follows:

π
(j)
i = Pr(Si,j + ωi,j ≥ c) (A.45)

In our simulation exercise, we set c = 1 and the correlation between algorithmic scores and true CATEs to
be 0.5, and draw ω from the uniform distribution U [−2, 2]. Further, we draw the ATEs from the uniform
distribution U [1, 2]. We keep all other primitives of our simulation the same as the primitives in our main
simulation exercise in §6.3. We generate the data and examine the performance of our algorithm compared
to the benchmarks. Figure A.9 shows the performance of our algorithm compared to the Double ML bench-
mark. As shown in this figure, our algorithm does a remarkable job in recovering the true ATEs, whereas
the Double ML produces largely biased estimates. When evaluating the targeting performance of our algo-
rithm, we find the OracleRatio(0.1) for our algorithm to be 0.997, highlighting its strong performance in
estimating CATEs and learning to prioritize.

19Please note that the rank of the matrix using the entries in training is 22, but when estimated with the same λ on the full set of
observed entries, the rank is 23. Here we use all entries, which is why we have 23 factors and their corresponding weights in Figure
A.8b.
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Figure A.9. The performance of the proposed algorithm and Double ML in recovering ATE in settings with
cutoff-based algorithmic decision-making.

In summary, our simulation exercise in this section shows that our algorithm extends beyond the auc-
tion environment to other settings with targeted allocation and algorithmic decision-making. Although the
platform can induce small-scale randomization in settings with full control over the assignment, it is worth
emphasizing that such design-based solutions are not useful for the existing data. Many firms have data sets
where the logged policy has a mixture of probabilistic and deterministic assignment. Our algorithm creates
great value in these cases as it allows firms to better utilize their existing data and make more informed
decisions.
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