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Abstract

Marketing interventions usually affect multiple outcomes of interest. However, finding an inter-
vention that improves all desired outcomes is often rare, creating a trade-off for policymakers. In this
paper, we develop a multi-objective personalization framework that develops personalized policies to
balance multiple objectives at the individual level. We apply our framework to a canonical example
of multi-objective conflict between sponsored and organic content consumption outcomes. Partnering
with vdo.ai, we conduct a field experiment and randomly assign users to the Skippable/Long and Non-
Skippable/Short versions of the same ad. We document substantial substitution between sponsored
and organic content consumption: the version that increases sponsored consumption reduces organic
consumption. We find that multi-objective personalized policies can significantly improve both spon-
sored and organic consumption outcomes over single-objective policies. We show that compared to a
single-objective policy optimized for organic consumption, there exists a multi-objective policy that
increases sponsored consumption by 61% at the expense of only a 4% decrease in organic consump-
tion. Similarly, compared to the single-objective policy optimized for sponsored consumption, there
is a multi-objective policy that increases organic consumption by 53% while decreasing sponsored
consumption by just 15%.
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1 Introduction

Marketers increasingly rely on experimentation and A/B testing for decision-making. Experimentation

identifies the causal effect of each experimental condition relative to a control group, thereby allowing

marketers to choose the one with the maximum desired impact. However, most modern marketing prob-

lems involve optimizing multiple outcomes. For example, a digital publisher wants to have a higher

organic content consumption to increase user engagement as well as a higher sponsored content con-

sumption to achieve higher ad revenues. The main challenge is that these outcomes are often in conflict

with each other. That is, actions that improve one desired outcome come at the expense of the other

outcome(s), making it unclear what actions to implement. Therefore, the solution to this multi-objective

conflict is essential to policymakers who want to find the right balance between objectives.

Personalization offers a potential solution to this problem. If we break down the heterogeneity in

treatment effects at the individual level, we may be able to reduce the multi-objective conflict. Figure

1 illustrates this point using a simple example, where the average treatment effects are in conflict: on

average, the treatment causes higher values in one outcome (e.g., organic consumption) but lower values

in the other outcome (e.g., sponsored consumption). In an optimistic scenario, the conflict disappears

once we look at the treatment effect heterogeneity at the individual level. The treatment effects have the

same sign for each individual, so the decision-making is trivial. However, in a pessimistic scenario, the

conflict persists even at the individual level: the treatment assignment remains unclear for each individual,

as shown in the right panel of Figure 1.

In this paper, we study the problem of multi-objective personalization and examine the value it can

create in settings with conflicting objectives. We view the problem through the lens of a platform and

address the following sets of questions. The first set of questions is mainly theoretical. How can we

design multi-objective personalization algorithms? What are the theoretical guarantees of these algo-

rithms? How can we quantify the performance and the value created by multi-objective personalization

algorithms? Next, we turn to a set of empirical questions. What are the gains from using a multi-objective

personalization algorithm in a setting with a high degree of substitution? What are the best algorithms in

terms of performance? How can managers use data to choose the right policy?
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Figure 1. Overview or Multi-Objective Personalization
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To answer these questions, we face several challenges. First, we need to characterize a specific target

or goal for our personalization problem. Unlike the single-objective personalization problem where the

expected outcome values are totally ordered, the main challenge in multi-objective personalization is that

policies are not directly comparable. This is because one policy can perform better than another policy

in one objective but worse in another objective. To address this challenge, we use the concept of Pareto

optimality and set our goal as identifying the Pareto frontier of the policy space in terms of multiple

objectives, which is the set of policies that are not dominated by any other policy in all objectives. As

such, the broad goal of multi-objective personalization is to eliminate all policies that are dominated by

at least one feasible policy.

Our second challenge is one of identification: whether we can design multi-objective personalization

algorithms that reliably identify the Pareto frontier of the policy space. We combine insights from the

recent literature on causal machine learning with that of multi-objective optimization. In particular,

we show that the feasible outcome space is convex, which implies that we can identify the complete

Pareto frontier using the scalarization approach that maps multiple objectives into a single objective

through linear weights. This allows us to design two multi-objective personalization algorithms: (1)

Scalarization with Causal Estimates (MO-SCE), which uses techniques from heterogeneous treatment

effect estimation and proposes policies based on these causal estimates, and (2) Scalarization with Policy

Learning (MO-SPL), which directly learns the policy that optimizes the weighted objective akin to the

literature on policy learning (Swaminathan and Joachims 2015, Athey and Wager 2021). The output of
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these algorithms is a set of policies that are on the Pareto frontier of the policy space.

Third, to provide an empirical proof-of-concept for our multi-objective personalization algorithms,

we need a setting with a high degree of substitution between outcomes, even at the individual level.

Further, for both policy identification and evaluation, we need experimental variation in the treatment as-

signment. To satisfy these requirements, we partner with the video advertising platform vdo.ai and run

a field experiment to estimate the effects of ad format on both sponsored and organic content consump-

tion, a canonical example in the marketing literature for two outcomes with a high degree of substitution

(Wilbur 2008). In particular, we assign users to three experimental conditions: (1) a Skippable/Long ad

for a product, (2) a Non-Skippable/Short ad for the same product, and (3) a No-Ad condition where the

user watches the video content without having to watch an ad. The two ad versions are 60-second and

15-second cuts of the same raw footage used by an actual advertiser. We only show pre-roll ads that

run before the organic video content and run the experiment for four days on over 50,000 users. The

experimental variation in assignment to each ad format allows us to apply our multi-objective person-

alization algorithms to identify Pareto optimal policies and perform counterfactual policy evaluation for

these policies in a confounding-robust manner.

We first estimate the average treatment effect of the Skippable/Long ad version in our study on spon-

sored and organic consumption metrics relative to the Non-Skippable/Short ad. We measure sponsored

consumption as the amount of ad content watched by the user, and organic consumption as the amount

of video watched by the user. We find that exposure to the Skippable/Long ad results in 13.5 seconds

higher sponsored consumption on average compared to the Non-Skippable/Short ad. Next, we focus on

organic consumption as the outcome and show that assignment to the Skippable/Long ad version results

in 9.5 percentage points lower organic consumption than the Non-Skippable/Short ad. We then test for

the substitution between sponsored and organic consumption. We cannot regress organic consumption on

sponsored consumption simply because sponsored consumption is endogenous. However, since our treat-

ment exogenously shifts sponsored consumption, we can use an instrumental variable research design.

When we instrument sponsored consumption with the treatment assignment, we find a clear substitution

pattern, where every 15 seconds increase in sponsored consumption results in approximately 13 seconds

lower organic video consumption, on average.
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Next, we explore heterogeneity in treatment effects across observed covariates. We use Causal Forests

to estimate the heterogeneity in treatment effects (Wager and Athey 2018). We show substantial variation

in the distribution of the Conditional Average Treatment Effect (CATE) on both sponsored and organic

consumption. However, the distribution of CATE estimates for each outcome is largely unidirectional:

all CATE estimates for sponsored consumption are positive, whereas nearly 97% of CATE estimates for

organic consumption are negative. This implies that only for 3.2% of all units, one treatment achieves

higher sponsored and organic consumption. Thus, even at the individual level, the platform faces a

challenge in finding the right policy that increases both sponsored and organic consumption.

Our multi-objective personalization framework aims to address the substitution between sponsored

and organic consumption. Intuitively, multi-objective algorithms identify units whose positive contribu-

tion to sponsored consumption outweighs their negative impact on organic consumption and assign these

units to the Skippable/Long ad version. We use our multi-objective personalization algorithms and iden-

tify a set of policies in each case. To evaluate the performance of these policies, we need a model-free

approach, as model-based approaches can favor some algorithms more than others. We turn to the Inverse

Propensity Scoring (IPS) estimator proposed by Horvitz and Thompson (1952) that provides an unbiased

estimate of the expected outcome under each policy and does not require model-based estimates of the

outcomes. To examine how well these algorithms perform, we compare their performance with a group

of single-objective personalized policies for each outcome and any random mixing of the two single-

objective personalized policies. The gap between our identified Pareto frontier using the multi-objective

personalization algorithms and this set of benchmarks quantifies the value multi-objective personalization

can create relative to a single-objective personalization algorithm.

Our results reveal a large gap between the Pareto front generated by our algorithms and the set of per-

sonalized policies that only use a single objective, indicating that multi-objective personalization creates

substantial value in this context. We document that compared to the single-objective personalized policy

that only optimizes sponsored consumption, there is a multi-objective personalized policy that increases

organic consumption by 53% while only decreasing the sponsored consumption outcome by 15%. We

further find larger gains when the platform wants to keep organic consumption high. We show that com-

pared to a single-objective personalized policy that only optimizes organic consumption, there is a policy
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on the identified Pareto frontier that improves sponsored consumption by 61% while only reducing or-

ganic consumption by 4%. Together, these findings show that multi-objective personalization can create

value by substantially improving the performance in one dimension (e.g., organic consumption) without

hurting the performance in the other dimension (e.g., sponsored consumption).

In sum, our paper offers several contributions to the literature. From a methodological standpoint,

we bring insights from multi-objective optimization to the literature on the intersection of machine learn-

ing and causal inference and propose a framework for multi-objective personalization. We prove that

scalarization identifies the complete Pareto frontier in the outcome space. In particular, we propose two

scalarization-based algorithms based on heterogeneous treatment effect estimation and policy learning

that can identify the Pareto frontier of policies in terms of multiple objectives. From a managerial per-

spective, our multi-objective personalization framework can be applied to a wide variety of settings where

there is a conflict in treatment effects on multiple outcomes that managers care about. Our framework

provides flexibility for policymakers and managers who want to achieve a certain balance between out-

comes by allowing them to evaluate the Pareto frontier a posteriori and select the policy. Substantively,

we identify a new area where personalization can create value. The prior literature on personalization

has often focused on the richness of covariates to demonstrate the value of personalization where we can

differentiate between users. This work uses the variation in multiple outcomes to develop better person-

alized policies. In particular, we show substantial gains in one outcome without sacrificing another in a

domain with a high degree of substitution. More specifically, our work contributes to the literature on the

interplay between sponsored and organic consumption. We highlight an important trade-off in the effect

of ad format on these outcomes and show that advertising platforms can incorporate a multi-objective

approach when designing their ad allocation policies.

2 Related Literature

First, our paper relates to the literature on personalization. User tracking and algorithmic decision-making

allow digital platforms to easily implement personalized policies at scale (Lambrecht and Tucker 2019).

Recent methodological developments in this literature have brought a causal lens to machine learning

algorithms that have been traditionally used for personalization tasks (Swaminathan and Joachims 2015,
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Shalit et al. 2017, Wager and Athey 2018, Nie and Wager 2021, Athey and Wager 2021). Applied

papers in this domain have documented the gains from personalization in a variety of domains, such as

marketing mix personalization for optimal admission and scholarship outcomes (Belloni et al. 2012),

incentives in churn management problems (Ascarza 2018), promotional offers in retail settings (Simester

et al. 2020a,b), allocation and sequencing of mobile in-app advertising (Rafieian and Yoganarasimhan

2021, Rafieian 2023), length of free trial in software as service industry (Yoganarasimhan et al. 2022),

and product versioning in music streaming platforms (Goli et al. 2022). The key insight in this series of

work is that having a fine-grained set of pre-treatment variables helps differentiate between users, thereby

creating value by assigning users to the right policy. We extend this literature by proposing a multi-

objective personalization framework that allows firms to identify Pareto optimal policies that generate

considerable gains in many dimensions. In particular, we show that even in a context where single-

objective personalized policies offer limited differentiation, a multi-objective personalization approach

can create substantial value by differentiating between users based on the magnitudes of treatment effects

and substitutability between outcomes at the individual level. Our generic and flexible framework makes

it applicable to many marketing and non-marketing problems where the policymaker needs to optimize

more than one objective.

Second, our paper relates to the literature on multi-objective optimization (Marler and Arora 2004).

This literature has proposed a series of algorithms to deal with multi-objective optimization problems,

ranging from scalarization techniques (Miettinen and Mäkelä 2002) to genetic algorithms (Deb et al.

2002). More closely related to our paper is the stream of literature that considers discrete policies that

map the covariate vector to a specific treatment condition, such as the literature on multi-objective con-

textual bandits (Tekin and Turğay 2018, Turgay et al. 2018, Wang et al. 2022, 2023) and multi-objective

reinforcement learning (Roijers et al. 2013, Van Moffaert and Nowé 2014, Abdolmaleki et al. 2020). Our

paper extends this stream of work in two ways. First, we bring a causal lens to the problem and directly

incorporate the Conditional Average Treatment Effect (CATE) estimates to the problem. Second, we the-

oretically show that the scalarization method can fully recover the Pareto frontier in this class of problems

as the expected outcome space under feasible policies is convex.

Our paper also relates to the literature on the interplay between sponsored and organic content (Sun
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and Zhu 2013). With advancements in ad measurements, the literature on TV advertising has docu-

mented a phenomenon called “zapping”, which is the practice of switching channels during commercial

breaks (Zufryden et al. 1993, Danaher 1995, Siddarth and Chattopadhyay 1998). Since then, a series

of papers have examined different aspects of ad avoidance by deriving the equilibrium properties in the

market users are averse to ads (Anderson and Coate 2005, Dukes et al. 2022), quantifying the audience

loss caused by ad avoidance (Wilbur 2008, Schweidel and Moe 2016, Rajaram et al. 2023), predicting ad

avoidance based on the past consumption of the product (Tuchman et al. 2018), linking ad avoidance to

sales (Bronnenberg et al. 2010, Deng and Mela 2018), and proposing market design solutions to account

for audience externalities (Wilbur et al. 2013).1 We contribute to this stream of work by causally identi-

fying a substitution pattern between sponsored and organic content consumption. Importantly, we show

how platforms can use personalization to efficiently exploit this substitution pattern and achieve desired

outcomes in both Ad Consumption (sponsored) and Video Consumption (organic).2

3 Multi-Objective Personalization

3.1 Problem Definition

At a high level, multi-objective personalization entails developing a personalized policy that performs

well in terms of multiple objectives. To characterize this problem, we need to first define what we mean

by a personalized policy and performance. Let X and W denote the covariates and treatment status,

respectively. To further formalize the problem, we let X and W denote the support for covariates and

treatment. For example, we have W = {0, 1} in a binary treatment context. For notational simplic-

ity, we follow the common norm in the literature and study the case for the binary treatment, which

is also consistent with our empirical application. However, it is easy to extend our algorithms to mul-

tiple treatment settings. In a multi-objective personalization problem, we have K different outcomes

denoted by {(Y (1), Y (2), · · · , Y (K))}. For each outcome Y (j), we define the set of potential outcomes

as {Y (j)(w)}w∈W . With these model preliminaries defined, we can characterize the key concepts in our

problem. We start with the definition of a policy π as follows:

1Please see Wilbur (2016) for a great summary of the ad avoidance literature.
2We use sponsored consumption interchangeably with Ad Consumption, and organic consumption interchangeably with

Video Consumption throughout the paper.
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Definition 1. A policy π : X → [0, 1] is a mapping from the covariate space to probability values that

determines the probability of treatment assignment for any observation based on its vector of character-

istics Xi.

Naturally, the definition above implies that the probability of assignment to control is 1− π(Xi). For

deterministic policies, π(·) only takes values in {0, 1}. Finding a personalized policy is a search over

infinitely many options. To perform this search effectively, we need a performance measure tied to our

multiple outcomes. For example, in our empirical context, we want to know how each policy performs

in terms of sponsored and organic consumption. We define these performance measures as follows:

Definition 2. For each outcome Y (j), we define the performance of the policy in terms of that outcome

as a mapping ρj : Π → R, where Π is the space of all possible policies. This indicates that for a policy

π, the performance in terms of outcome Y (j) is characterized by ρj(π). We can formally define this term

as follows:

ρj(π) = E
[
π(Xi)Y

(j)
i (1) + (1− π(Xi))Y

(j)
i (0)

]
, (1)

where the expectation is taken over the joint distribution of the covariates. Intuitively, ρj(π) is the ex-

pected value of the outcome Y (j) if we implement policy π.

In a multi-objective personalization problem, we need to consider performance metrics for all out-

comes of interest. As a result, comparing two policies is more challenging in a multi-objective case

compared to a single-objective case, where there is one objective with a clear order. For example, in the

context of our problem, we can consider two objectives ρs(π) and ρo(π) that are defined for the Spon-

sored Consumption and Organic Consumption outcomes, respectively. If there are two policies π1 and

π2 such that ρs(π1) > ρs(π2) and ρo(π1) < ρo(π2), it is not clear which one the platform must choose.

However, if there are two policies π1 and π2, such that ρs(π1) > ρs(π2) and ρo(π1) > ρo(π2), we can

conclude that policy π2 is dominated by π1 with respect to both objectives. This type of comparison

immediately brings us to the notion of Pareto optimality, where the Pareto frontier of the policy space is

the set of policies that are non-dominated by any other policies. To this end, we define the main goal of

multi-objective personalization as follows:

9



Definition 3. Suppose that there is a policymaker who wants to optimize multiple outcomes Y (1), Y (2),

. . . , Y (K). Our goal is to find a set of policies Πf that are Pareto optimal in terms of objectives ρ1(π),

ρ2(π), . . . , ρK(π). That is, for each π ∈ Πf , there is no other policy π′ in the space of policies such that

we have ρj(π
′) > ρj(π), for every j.

Intuitively, our goal is to eliminate dominated policies and present the policymaker with a set of

Pareto optimal policies Πf . In the next section, we discuss how we can design algorithms to identify

these Pareto optimal policies.

3.2 Algorithms for Multi-Objective Personalization

Fundamentally, the problem in Definition 3 can be viewed as a multi-objective optimization problem. The

literature on multi-objective optimization offers many solutions to this problem, given the setting. Much

of this literature focuses on the problem with a set of continuous control variables set by the policymaker

that are linked to multiple notions of reward or objective (Marler and Arora 2004). For example, a

driver can set continuous variables speed and total passenger weight to optimize the travel time and fuel

cost. Multi-objective personalization problem involves finding a complex individual-specific policy that

performs well on multiple objectives. As such, our problem is more closely related to the literature on

multi-objective contextual bandits (Drugan and Nowe 2013, Tekin and Turğay 2018, Turgay et al. 2018,

Wang et al. 2022, 2023) and multi-objective reinforcement learning (Roijers et al. 2013, Van Moffaert and

Nowé 2014, Abdolmaleki et al. 2020). Most of these papers focus on regret bounds in an online setting

with exploration or use a very specific type of multi-objective optimization problem. Our work considers

a general personalization problem in an offline setting and proposes algorithms that can provably identify

the complete Pareto frontier with statistical guarantees. A novel aspect of our work is in bringing a

causal lens to this problem, which allows us to propose solutions that are generalizable and robust to

confounding.

One of the most popular solutions to the multi-objective optimization problem is linear scalarization,

whereby we map multiple objectives into a single objective using linear weights that come from the prob-

ability simplex. That is, for any set of non-negative weights β ∈ RK
+ such that

∑K
j=1 βj = 1, we maximize∑K

j=1 βjρj(π). It is easy to show for any given set of weights, the optimal solution
∑K

j=1 βjρj(π) is Pareto
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Figure 2. Identification of Pareto Optimal Points Using Linear Scalarization
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optimal.3 However, there is no guarantee that we can identify the full Pareto frontier by enumerating all

possible weights. Figure 2 helps illustrate this point in a setting with two objectives. Geometrically,

linear scalarization finds the optimal solution by shifting the lines in the direction illustrated. As such, it

can only identify Pareto optimal solutions that are on the convex hull of the outcome space (e.g., point

A in Figure 2) but fail to identify Pareto optimal solutions that are not on the convex hull of the outcome

space (e.g., point B in Figure 2). Thus, in the general case, linear scalarization methods cannot identify

the complete Pareto frontier.

Our multi-objective personalization problem differs from the general class of multi-objective prob-

lems as we can formally prove that the outcome space {(ρ1(π), . . . , ρK(π))}π∈Π is convex. The intuition

for this result is simple. For any two points in the outcome space, we can find the set of policies that

cover the line between these two points using a mixed strategy policy that probabilistically uses these

two policies. Thus, we can write the following proposition:

Proposition 1. Let B = {β | β ∈ RK
+ ,
∑K

j=1 βj = 1} denote the full set of linear weights. For any

β ∈ B, we define πS
β = argmax

∑K
j=1 βjρj(π), which is the solution to single objective problem with

weights β. The full set of policies identified by linear scalarization, defined as ΠS = {πS
β}β∈B, is the

complete Pareto frontier of the outcome space, i.e., ΠS = Πf .

3We can prove it by contradiction: if there is a policy π′ that dominates π in all objectives, then it is a contradiction that π
is the optimal solution to the scalarized objective.
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Proof. See Appendix A.1 for the proof.

This proposition theoretically shows that we can use linear scalarization to identify the complete

Pareto frontier if we know the function ρj(·) for any k. Empirically, we need to estimate the function

ρj(·). For any set of weights β ∈ B, we can write the scalarized optimization problem as follows:

πS
β = argmax

K∑
k=1

βkρk(π) (2)

In the following sections, we propose two algorithms that take data as the input and use linear scalar-

ization to empirically identify the Pareto frontier. Before we proceed with our empirical algorithms, we

make a key assumption:

Assumption 1. The following four conditions hold for data set D = {(Xi,Wi, Y
(1)
i , . . . , Y

(K)
i )}Ni=1: (1)

Stable Unit Treatment Value Assumption (SUTVA), which states that potential outcomes for one unit are

not influenced by other units’ treatment assignment and there is only one version for each treatment, (2)

Unconfoundedness assumption, which states that the treatment assignment is independent of potential

outcomes given observed covariates, (3) Overlap, which states that the treatment assignment is proba-

bilistic, and (4) No Distribution Shift assumption, which indicates that the joint distribution of covariates

and potential outcomes is fixed.

The four conditions in the assumption above are all standard causal inference assumptions that are

largely used in the personalization literature (Rafieian and Yoganarasimhan 2023). As we will discuss

later, these assumptions allow us to empirically identify the Pareto frontier using our algorithms.

3.2.1 Scalarization with Causal Estimates

In this section, we present an empirical solution to the optimization problem in Equation (2) that is based

on causal estimates. We first define our key causal estimand as follows:

Definition 4. For any outcome Y (j), the Conditional Average Treatment Effect (CATE) is denoted by

τk(·) and defined as follows:

τk(x) = E
[
Y

(j)
i (1)− Y

(j)
i (0) | Xi = x

]
(3)
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Using the potential outcomes framework and the CATE definition, we can write the following propo-

sition about the optimal personalized policy given any β:

Proposition 2. For any β ∈ B, the optimal solution to the objective function in Equation (2) is as follows:

πβ(x) = 1(
K∑
j=1

βjτj(x) ≥ 0), (4)

where τj(·) is the CATE on outcome Y (j).

Proof. Please see Web Appendix A.2.

The intuition behind Proposition 2 is simple: the only policy-variant element of ρj is τj . Hence, we

can simplify the policy optimization in Equation (2) and write it in terms of CATEs. This also simplifies

the empirical task at hand, as we only need to estimate CATEs. Intuitively, the policies generated based

on Proposition 2 split the space of CATE estimates by a hyperplane that separates points that should be

assigned to treatment or control. Figure 3 presents a simple example with two objectives, where the line

for a given β determines which observations should receive the treatment or control. For other weights,

the line shown will rotate in a certain direction and identify a different policy. Our Scalarization with

Causal Estimates algorithm precisely does that: it forms the union of all policies generated by different

values of β ∈ B.

Figure 3. An Illustration of the Assignment Policy in Scalarization with Causal Estimates
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Estimates policy for β = (0.25, 0.75), so points above the line 0.25τ1 + 0.75τ2 are assigned to treatment (red plus), and
points below that line to the control condition (blue circle).
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We present our algorithm for Scalarization with Causal Estimates in Algorithm 1. The algorithm takes

CATE estimates as inputs and generates different policies corresponding to each element of the set B. As

shown in this algorithm, for any set of weights β ∈ B, we use CATE estimates to obtain a personalized

policy. The output is a set of policies that is the identified Pareto frontier using this algorithm. We present

a very simple illustrative example with three data points in Appendix A.3. The identification of our Pareto

frontier is equivalent to the identification of CATE parameters. Therefore, we need the standard causal

inference assumptions laid out in Assumption 1 for identification. The theoretical guarantees for the

identified Pareto frontier depend on the guarantees for CATE estimates.

Algorithm 1 Scalarization with Causal Estimates (MO-SCE)
Input: {(τ̂1(Xi), τ̂2(Xi), . . . , τ̂K(Xi))}Ni=1, B
Output: ΠMO-SCE

1: for ∀(β1, β2, . . . , βK) ∈ B do
2: πSCE

β (x)← 1

(∑K
j=1 βj τ̂j(x) ≥ 0

)
3: end for
4: ΠMO-SCE ←

⋃
β∈B π

MO-SCE
β (x)

3.2.2 Scalarization with Policy Learning

An alternative empirical approach to identify policies that optimize the objective function in Equation (2)

is to use direct policy learning (Swaminathan and Joachims 2015, Athey and Wager 2021). In a single-

objective setting where we only want to optimize ρj(·), this approach uses an unbiased estimate of ρj(·)

to form an objective function. It then identifies the policy π from a certain policy class Π∗ that optimizes

the objective function. In this section, we want to define this approach for the multi-objective setting as

in Equation (2). To do so, we define an estimator for ρj(·) as follows:

Definition 5. Let e(Xi) denote the propensity score for treatment. For any data D with N observations,

the Inverse Propensity Scoring (IPS) estimator for outcome Y (j) under policy π is defined as follows:

ρ̂IPS
j (π;D) = 1

N

∑
i∈D

(
π(Xi)Wi

e(Xi)
+

(1− π(Xi))(1−Wi)

1− e(Xi)

)
Y

(j)
i . (5)

The IPS estimator was first proposed by Horvitz and Thompson (1952) and then used widely for

counterfactual policy evaluation in the personalization literature (Rafieian and Yoganarasimhan 2023).
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Importantly, the IPS estimator ρ̂IPS
k (·) is an unbiased estimator for ρj(·). As such, we can define the

empirical equivalent of Equation (2) by plugging in ρ̂IPS
j (·) for every ρj(·). In the following proposition,

we show what optimizing this empirical target is equivalent to:

Proposition 3. Suppose we have dataD = {(Xi,Wi, e(Xi), Y
(1)
i , . . . , Y

(K)
i )}i. The variable Γi is defined

at the individual level as follows:

Γi =

(
Wi

e(Xi)
− 1−Wi

1− e(Xi)

)( K∑
j=1

βjY
(j)
i

)
(6)

For a given deterministic policy class Π∗, the solution to the argmaxπ∈Π
∑K

j=1 βj ρ̂
IPS
j (π) will be the

solution to a weighted classification problem with Li = sgn(Γi) as the label and |Γi| as weights.

Proof. Please see Web Appendix A.4.

This proposition indicates that for any β ∈ B, we can directly learn policy πS
β in Equation (2), using

any off-the-shelf classification algorithm. The intuition behind this is simple: a more positive Γi indicates

greater gains when assigned to the treatment, whereas a more negative one indicates greater gains when

assigned to the control condition. A weighted classification tries to learn the best assignments. Figure

4 shows an example of treatment assignment under the policy learning approach. Unlike Figure 3, the

policy is not linear in CATE estimates, but follows the same logic: points with higher CATEs on both

dimensions are more likely to receive the treatment.

We present the algorithm for multi-objective personalization that uses the policy learning approach

in Algorithm 2. Like Algorithm 1, we obtain an estimate of policy πS
β for any β ∈ B. The resulting

output is a set of size |B|, which is the identified Pareto frontier using the policy learning algorithm. We

present a very simple illustrative example with three data points in Appendix A.5. Like Scalarization with

Causal Estimates, we require the standard assumptions of causal inference presented in Assumption 1 for

identification. However, one key advantage of this approach is that even without theoretical guarantees

on the 1/
√
N -rate estimation of CATEs, we can identify the optimal policy at a 1/

√
N -rate regret over

the policy class Π if we know the propensity scores and the VC dimension of Π is finite (Athey and

Wager 2021). Another advantage of this algorithm is that we can directly give CATE estimates as inputs
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Figure 4. An Illustration of the Assignment Policy in Scalarization with Policy Learning
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Note: Each point shows the CATE on Outcomes 1 and 2 for a data point. The figure illustrates the Scalarization with Policy
Learning policy for β = (0.25, 0.75). The treatment (red plus) and control (blue circle) assignments are determined based on
the weighted classification task.

in addition to the data D, facilitating the policy learning process. On the other hand, the main drawback

of this approach is for cases where propensity scores are small, which creates a large variance in the Γ

weights. In order to overcome this challenge, the natural solution in the literature is to use a doubly robust

scoring as in Athey and Wager (2021).

Algorithm 2 Scalarization with Policy Learning (MO-SPL)

Input: {Xi,Wi, e(Xi), Y
(1)
i , . . . , Y

(K)
i }i, B

Output: ΠMO-SPL

1: for ∀(β1, β2, . . . , βK) ∈ B do
2: Γi ← ( Wi

e(Xi)
− 1−Wi

1−e(Xi)
)(
∑K

j=1 βjY
(j)
i )

3: πSPL
β ← argmaxπ∈Π(2π(x)− 1)Γi

4: end for
5: ΠMO-SPL ←

⋃
β∈B π

MO-SPL
β (x)

3.3 Evaluation of Set of Policies

Suppose we have two algorithms A and B that identify policies πA and πB in a single-objective per-

sonalization problem. If we have an evaluator ρ̂(·), we can compare the performance of πA and πB and

see which one performs better. In a multi-objective personalization setting, however, algorithms A and

B identify a set of policies ΠA and ΠB, respectively. As such, the comparison is not trivial as we are

dealing with sets of policies. In this section, we use the theoretical structure of our problem and propose

a simple measure that allows us to compare the performance of two sets.
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Figure 5. A Visual Illustration of Multi-Objective Policy Evaluation.
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We use a 2-dimensional example in Figure 5 to illustrate our proposed measure. Each point in this

figure corresponds to the expected outcomes under a policy. We see the expected outcomes under two

single-objective personalized policies, SO1 and SO2. Given that the outcome space is convex, we know

that the weakest identified Pareto frontier would be the line between these two single objective policies, as

one could achieve any point on this line by using a mixed strategy policy that uses either single-objective

personalized policy with a certain probability. The line between the two single-objective personalized

policies thus serves as a reasonable benchmark for multi-objective personalization. On the other hand,

the best-case scenario for multi-objective personalization is to achieve a Utopia point shown in Figure 5

that takes the optimal expected outcome in each dimension. The Pareto frontier will naturally be a curve

within the triangle between single-objective policies and the utopia point.

Intuitively, the farther the Pareto frontier gets from the single-objective line and the closer it gets to

the utopia, the greater the value created by multi-objective personalization. Therefore, the area between

the Pareto frontier and the line between single-objective personalized policies indicates the performance

of the set of Pareto optimal policies. To normalize this measure, we use the proportion of this area to

the total area of the triangle as our main measure and call it the Covered Area Proportion (CAP). We can

easily extend this notion to multi-dimensional settings and evaluate the set of Pareto optimal policies.

4 Empirical Application

In our empirical application, our primary goal is to provide a proof-of-concept for our multi-objective

personalization algorithms. As such, we need a setting where there is a high degree of conflict between
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Figure 6. Different Types of Video Ads
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the treatment effects on multiple outcomes of interest. Further, we need to have an experiment so we

can reliably measure the performance of policies proposed by our algorithms. To meet these criteria, we

collaborate with the video advertising platform vdo.ai and conduct a field experiment to measure the

impact of ad format on both sponsored and organic content consumption, outcomes that exhibit a high

degree of substitution (Wilbur 2008).

Before we proceed with the details of our empirical application, we stress that the main purpose of our

empirical application is to provide the right setting to test our multi-objective personalization framework

and acknowledge that obtaining generalizable insights from our experiment is challenging, given the

heterogeneity in the effects of interest and the specificity of our empirical context.

4.1 Experiment

The application setting of our study is the video advertising industry. We partner with the company

vdo.ai, which is based in India and the US and provides video services to publishers worldwide. Since

its launch, vdo.ai has attracted many large and medium-sized media publishers who use the company’s

technology to serve organic and sponsored video content on their web pages. As a form of monetization,

vdo.ai places video ads at different parts of an organic video. The sponsored content in our study is in

the form of video ads. The video ads are generally of three types: (1) pre-roll ads that are placed prior to

the start of the video, (2) mid-roll ads that are placed in the middle of the video, and (3) post-roll ads that

are placed after the content video has finished playing. Figure 6 visualizes these different types of ads.

In our experiment, we only focus on the pre-roll ads that are shown before the organic content starts.

Unlike video streaming platforms such as YouTube, the organic video content in our context is not

generally the primary reason a user is visiting a web page. For example, the organic video content may be

placed in a news article a user wants to read. This is a common practice among media publishers such as

cnn.com or espn.comwho display organic and sponsored content within the news article. As the main

18



facilitator of sponsored and organic video content, vdo.ai wants a higher sponsored consumption as it

is directly linked to ad revenues4, as well as a higher organic consumption as it relates to user engagement

and attracts more content creators, which helps the platform generate more advertising opportunities in

the short and long run.

The platform uses two different inventories of ad impressions to allocate video ads. In the first in-

ventory, a second-price auction determines which ad will be placed in an impression. That is, advertisers

participate in an auction, and the impression will be awarded to the ad with the highest bid or willingness

to pay. The second inventory is an unsold impression inventory used for experimentation.5 We use this

second inventory of impressions for our experiment, which ensures that ads shown in our experiment are

not determined through any algorithmic or human-directed targeting process.

We design a fully randomized experiment at vdo.ai, where the pre-roll impressions are assigned

to three experimental conditions: (1) No-Ad condition, where the user does not need to watch an ad to

start consuming the organic video content, (2) Non-Skippable/Short ad condition, where the ad shown is

a 15-second long ad of the boAt’s Watch Xtend product that is not skippable, and (3) Skippable/Long ad

condition, where the ad shown is a 60-second long ad of the same boAt product that is skippable after

five seconds. We split the impressions randomly across treatment conditions with different weights, such

that the No-Ad condition is used for 10% of all impressions, and either one of the ad conditions is shown

in 45% of impressions each. For the Non-Skippable/Short and Skippable/Long ad conditions, we use

two versions of an advertisement for the same boAt product. The two ads are short and long cuts of the

same raw footage, launched by an actual advertiser. In Web Appendix B, we present more details about

the advertised product and brand and show a snapshot from each ad format. It is worth emphasizing that

although the set of ads is selected from the actual ad inventory, it is not a representative set. As such,

our analysis cannot offer generalizable substantive insights about the effect of skippability and length

of video ads. Instead, we adopt the perspective of a platform that wants to choose between the two ad

formats given its impact on the downstream outcomes, such as sponsored and organic consumption.

4Advertisers care about the ad effect on conversion outcomes, which determines their willingness to pay for units of
sponsored consumption. In our analysis, we assume a fixed price per unit of sponsored consumption. It is easy to relax this
assumption and directly optimize for ad revenues.

5This inventory is unsold only for research and development purposes, and the quality of impressions in this inventory is
the same as the impressions that are auctioned off.
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Figure 7. A Visual Schema of the Experiment Design.
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Figure 7 summarizes a schema of our experiment and the treatment conditions. The points show the

pixels placed to find whether the user has reached a certain point in the ad and video. This means that we

can record whether the user has reached the midpoint of the Skippable/Long ad (i.e., second 30) or the

third quarter of the organic video (75%). Although we can control for the exact ad shown, the organic

video content is chosen by the users, so they can be different videos with different lengths. However,

given the randomization in our experiment, the organic video does not affect the treatment condition.

Thus, the distribution of videos is the same across treatment conditions. We ran the experiment for four

days, from July 19–22 in 2022 on a total of 59,692 impressions.

4.2 Data

Each observation in our data refers to a unique session, which is defined as an event where a user visits

a web page with video content placed through the vdo.ai platform. For each session in our data, we

observe a set of pre-treatment variables, treatment assignment, and a rich set of post-treatment variables

or outcomes as the main focus of our empirical application is to study policy-making when there are

many outcomes. For pre-treatment variables, we observe the user’s IP Address, Time of Day, Date, City,

Country, and the Operating System (OS) of the device that the user is using. For post-treatment variables

or outcomes, collect a rich set of post-treatment variables or outcomes both on the ad performance and

video engagement metrics. As shown in Figure 7, we place pixels at different points in the sessions

that indicate whether the user has reached those points. For both ads, the pixels are placed every 15
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seconds6, and for the video, these pixels are placed for every quarter (25%) of the video.7 In addition

to the pixels shown in Figure 7, we also collect information about whether the user has clicked on the

website link embedded in the ad. However, the focal ad in our experiment is a brand ad without a clear

click objective. As a result, the click-through rate (CTR) is relatively low.8 Overall, our rich-feedback

environment allows us to evaluate the performance of our treatment conditions in terms of different ad-

and video-related metrics used in this industry.

Such detailed tracking also helps us with data cleaning. Specifically, we identify whether a user

faces technical issues or uses an ad blocker. In particular, if the pixel at the beginning of both the ad

and video returns null values, we assume that the user had technical issues, such as a network problem.

Similarly, if the pixel has a null value at the beginning of the ad but a real value at the beginning of

the video, we conclude that the user uses ad blockers. Although this approach identifies ad blockers

for impressions that are assigned to an ad condition, it is clear that we cannot identify ad blockers for

users in the No-Ad condition. However, since our main analysis concerns the difference between two

ad formats, this does not cause a problem in our main analysis. Overall, we remove 703 observations

because of technical issues and 528 observations for using ad blockers. This gives us a sample of 58,461

observations generated by 56,662 unique users.

For our main analysis, we only focus on the two ad conditions and drop observations for the No-Ad

condition, which reduces our sample size to 53,176 sessions generated by 51,423 unique users. Since

we only use the first session for each user, our final sample has a total of 51,423 sessions to study. We

use this sample throughout the paper for all the results. We present some basic summary statistics of

the data. We start with the pre-treatment variables, which are all categorical variables. We find the top

three subcategories with the highest number of observations for each variable in our data. We present

this information about each variable along with the total number of subcategories in Table 1. As shown

6It is worth noting that the Ad Consumption in the Non-Skippable/Short condition is recorded at the quarter level. However,
we do not use that information to balance the unit of our Ad Consumption outcome across treatments. Our results are robust
when we incorporate this information.

7It is worth noting that videos can be of different lengths. For example, the first quartile for a two-minute video is reached
after 30 seconds, whereas this point can be reached after 10 seconds in a 40-second video. This is a limitation of our analysis.
However, the video lengths would not significantly differ across groups since we randomize the treatment.

8In general, industry reports indicate that the primary focus of digital video ads is to increase brand awareness, as opposed
to improving objective performance measures such as click or purchase (Ferguson 2023).
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Table 1. Summary Statistics of the Pre-Treatment Variables.

Variable Number of Top three subcategories and their shares
subcategories 1st 2nd 3rd

Hour of Day 24 7AM MST (7.76%) 6AM MST (6.82%) 8AM MST (6.76%)
Date 4 07/21/2022 (39.19%) 07/22/2022 (37.20%) 07/20/2022 (14.69%)
City 956 Mumbai (51.87%) Delhi (7.55%) Hyderabad (6.83%)
Country 12 India (99.92%) United States (0.06%) Australia (0.00%)
Operating System 6 Android (79.52%) Windows (13.21%) iPhone (5.31%)

in this table, the hours with the highest traffic are 6–8 AM MST, which would be 5:30-7:30 PM in India,

where most of the traffic comes from. The experiment was run from July 19 through July 22, and the last

two days had the highest traffic.

As indicated in Table 1, there are a total of 956 cities in our data. However, over half of the observa-

tions are from Mumbai. It is worth noting that there are many cities with only one observation in our data.

Next, we find that the vast majority (99.56%) of all observations occur in India. The statistics on our final

pre-treatment variable show that Android OS is the most common OS in our data, with around 80% of

the total traffic. In Web Appendix C, we perform extensive randomization checks on the distribution of

pre-treatment variables to ensure that the randomization has been implemented correctly in our study.

4.3 Average Treatment Effect Analysis

Before we proceed with the analysis, we tie our notation to the methodological framework. We let i

denote each observation in our data, and X and W denote the pre-treatment covariates and the treatment

variable, respectively. Since we are interested in the difference between the ad formats, we define W

as a binary variable with W = 1 and W = 0 referring to Skippable/Long and Non-Skippable/Short ad

formats, respectively.9 For inference, we use the common assumptions in the causal inference literature:

(1) overlap, (2) unconfoundedness, and (3) the stable unit treatment value assumption (SUTVA). The

first two are satisfied by design since we have a randomized controlled trial. SUTVA is also reasonable

because there is no interaction between users, and the treatment received by all users in the same treatment

condition is identical (i.e., no multiple versions of the treatment). Under these assumptions, we know

that the average treatment effect is the difference in group averages (Neyman 1923). We use this fact

for our main analysis. Here in the main text, we present a summary of average treatment effects on

9We only use these two treatment groups in the main text, but we present some results with the No-Ad condition in Web
Appendix D.
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Table 2. Average Treatment Effects (ATE) Across Outcomes.

Outcome Mean of Treatment A Mean of Treatment B Mean Difference B −A
(Non-Skippable/Short) (Skippable/Long) Estimate p-value

Ad Consumption (×15s) 0.53526 1.43567 0.90041 < 0.001
Second 15 Complete 0.53526 0.55413 0.01887 < 0.001
Ad Complete 0.53526 0.21338 −0.32188 < 0.001

Ad Click 0.00125 0.00128 0.00003 0.926

Video Consumption 0.79714 0.41817 −0.37897 < 0.001
Video Start 0.44535 0.20727 −0.23808 < 0.001
Video Q1 Reached 0.30804 0.15059 −0.15745 < 0.001
Video Q2 Reached 0.22146 0.11634 −0.10512 < 0.001
Video Q3 Reached 0.15768 0.08713 −0.07055 < 0.001
Video Q4 Reached 0.10995 0.06411 −0.04585 < 0.001

Note: The number of observations is 51,423 for all models.

different managerially relevant outcomes as they relate to our multi-objective personalization framework

and present the detailed description of outcomes and interpretation of the results in Appendix D.1.

We estimate the average treatment effects on the complete set of outcomes and present the results

in Table 2, where each row presents the results for one outcome. The first panel in Table 2 presents

the ATE for ad-related outcomes. We find that the average consumption of the Skippable/Long ad is

significantly higher than that of the Non-Skippable/Short ad, with the average treatment effect being

0.90 × 15 = 13.50 seconds, which is approximately equal to the length of the short ad in our study. We

then focus on two other sponsored consumption outcomes: (1) Second 15 Complete and (2) Ad Complete.

The former outcome is of interest to platforms that charge Skippable/Long ads once the user watches 15

seconds. Interestingly, we find that the Skippable/Long version has a significantly higher completion

of the first 15 seconds than the Non-Skippable/Short version, despite the skippability of the ad in this

condition. When we focus on the Ad Complete outcome, we find that the Non-Skippable/Short ad has

a substantially higher completion rate, which is expected due to the shorter length and non-skippability

of this ad version. The final ad-related outcome in our study is Ad Click, which measures whether the

user clicked on the ad. We find no significant difference between the Click-Through Rate (CTR) of ad

formats, which is expected because the objective of the boAt ad campaign in our study is to generate

more awareness, not performance measures like clicks.

Next, we focus on video-related outcomes that measure organic consumption. Our main measure of

organic consumption is the number of quarters the user has watched the organic content, which we define
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as Video Consumption. We find that users in the Skippable/Long condition consume 0.38 quarters less

than those in the Non-Skippable/Short condition. This is equivalent to a 9.5 percentage point difference

in the video consumed. We break down Video Consumption into five binary variables corresponding to

the beginning of the video and each quarter of the video that is reached. As shown in Table 2, all quarters

are more likely to be reached in the Non-Skippable/Short condition than the Skippable/Long condition.

The conflict in average treatment effects on Ad Consumption and Video Consumption raises the

question of substitution between the sponsored and organic channels. In order to measure the substitution,

one approach is to regress Video Consumption on Ad Consumption to see how the two outcomes are

linked. However, the main issue with this approach is that users can self-select how much they consume

an ad, causing well-known selection or endogeneity bias. We need to use an approach that only uses

the exogenous variation in Ad Consumption. Our treatment variable provides a fully random exogenous

shifter for this purpose. As a result, we can instrument Ad Consumption with our treatment variable and

isolate the causal effect of Ad Consumption on Video Consumption. We present the results from both

plain and Instrumental Variable regressions in Table 3. Although the results of column 1 show a positive

association between Ad Consumption and Video Consumption in the endogenous specification, we find a

strong substitution when we account for endogeneity bias using our 2SLS model, as shown in column 2 of

Table 3. Specifically, we find that a 15-second increase in Ad Consumption reduces Video Consumption

by 0.42 quarters or 10.52 percentage points. While we do not have the information about the exact length

of videos, we know that the average is around 2 minutes or 120 seconds. Using a back-of-the-envelope

calculation, we find that every 15-second increase in Ad Consumption decreases Video Consumption by

120 × 0.1052 = 12.62s, on average, demonstrating a strong substitution pattern between sponsored and

organic consumption.

From a platform perspective, this substitution pattern highlights an inherent trade-off in optimizing

sponsored and organic consumption. At the aggregate level, strategies that increase Ad Consumption

(sponsored) come at the expense of Video Consumption (organic). As such, this conflict between out-

comes creates a perfect setting to provide a proof-of-concept for our multi-objective personalization

algorithms.
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Table 3. Regression Result for the Link Between Video Consumption and Ad Consumption

Outcome: Video Consumption (Quarters)

(1) Ordinary Least Squares (OLS) (2) Instrumental Variable (2SLS)

Ad Consumption (× 15 Seconds) 0.3538∗∗∗ −0.4209∗∗∗
(0.0042) (0.0150)

Instruments None Treatment
Weak Instruments Test 7567∗∗∗

No. of Obs. 51,423 51,423

Note: Standard errors reported in parenthesis. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

4.4 Heterogeneous Treatment Effect Analysis

So far, we have shown a strong substitution pattern between ad and video consumption, which poses

a challenge for the platform that wants to optimize both outcomes simultaneously. In this section, we

explore the heterogeneity in treatment effects to see if the substitution pattern persists at a more fine-

grained level. As such, we work with the Conditional Average Treatment Effect (CATE) defined in

§3.2.1. In principle, if the positive average treatment effect on Ad Consumption and the negative average

treatment effect on Video Consumption come from separate portions of our data, the solution is clear

for the platform. For example, suppose that there are two groups of users Ia and Iv such that Ia ∩

Iv = ∅, where users in Ia have a positive CATE on Ad Consumption and a positive CATE on Video

Consumption, whereas users in Iv have a negative CATE on Ad Consumption and a negative CATE on

Video Consumption. In this case, the platform’s solution is to assign users Ia to the Skippable/Long ad

and users in Iv to the Non-Skippable/Short ad. To test this possibility, we need to estimate treatment

effects for both outcomes for any individual for a vector of covariates Xi.

In recent years, many methods have been developed to estimate CATE (Shalit et al. 2017, Wager and

Athey 2018, Nie and Wager 2021). We use Causal Forests as our main method to estimate CATE on both

outcomes. We refer the interested reader to Wager and Athey (2018), Athey et al. (2019) for a detailed

algorithm presentation. For the set of covariates, we use all the pre-treatment variables presented in Table

1, as well as the exact timestamp to capture more fine-grained time-dependent heterogeneity and latitude

and longitude of cities to go beyond the city categories and capture the spatial heterogeneity patterns (if

any). We use 10-fold cross-validation to tune the hyper-parameters of the Causal Forest.
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Figure 8. The Distribution of CATE Estimates for Ad and Video Consumption.
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(b) Outcome: Video Consumption (in Quarters)

We present the histogram of our CATE estimate for both Ad Consumption and Video Consumption

outcomes. Figure 8a shows how CATE for the Ad Consumption outcome varies across individuals. As

shown in this figure, although there is extensive variation in the CATE estimates, the sign for all units

remains positive. This indicates that the Skippable/Long ad format results in greater Ad Consumption

than the Non-Skippable/Short format for all individuals in our data. Thus, if we use this sole objective

for developing a personalized policy, the resulting policy will be a uniform Skippable/Long ad condition

for everyone.

We then move on to CATE estimates for Video Consumption as our video-related outcome and visu-

alize the distribution of CATE estimates in Figure 8b. As shown in this figure, although the vast majority

of CATE estimates are negative, there is a small 3.15% of users with positive CATE estimates. Therefore,

the optimal personalized policy with respect to Video Consumption as the objective is almost the same

as a uniform policy where all users are assigned to a Non-Skippable/Short ad. For both outcomes, we

present a more interpretable analysis of treatment effect heterogeneity in Web Appendix D.3.

Combining the results from both histograms in Figure 8, although we find substantial variation in

the heterogeneous treatment effects on both Ad Consumption and Video Consumption outcomes, the

substitution pattern persists even at the individual level. To better understand the substitution pattern at

the individual level, we plot the CATE on Video Consumption against the CATE for Ad Consumption and

present the resulting scatter plot for a random sample of our observations in Figure 9. The first pattern

that emerges from this figure is that only for a small portion of units do we have the same sign for CATE

on both outcomes. These points (shown in red in Figure 9) account for 3.15% of all units in our data.
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Figure 9. Scatter Plot of CATE Estimates on Video Consumption and Ad Consumption
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Finally, we ask a broader question: To what extent are CATE estimates for these two outcomes in

conflict at the individual level? Since we want higher CATE estimates for both outcomes at the individual

level, we want a more positive correlation between these CATE estimates. On the other hand, a negative

correlation between these CATE estimates indicates that a higher CATE for one outcome is associated

with a lower CATE for another outcome, thereby making the multi-objective solution more challenging.

As shown in Figure 9, there is a weak positive correlation between CATE estimates for both outcomes

(correlation = 0.13). Although the positive association between these CATE estimates is not strong, it is

still promising as it suggests that CATE estimates move in the same direction, on average. Intuitively,

points that contribute most to higher Ad Consumption have a more positive (or less negative) impact

on Video Consumption. Thus, the pattern in Figure 9 suggests that multi-objective personalization can

be useful for the platform that wants to achieve higher sponsored and organic consumption outcomes

simultaneously. To that end, the task at hand is to achieve a good outcome with respect to one objective

without compromising too much on the other. We discuss this problem in the next section in greater

detail.

5 Returns to Multi-Objective Personalization

5.1 Counterfactual Policy Evaluation

Our main algorithms in §3.2 generate a set of policies. These policies have not been implemented in our

data, but we need to evaluate what would have happened had the platform implemented these policies.
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As such, the question of evaluating a certain policy π becomes one of counterfactual policy evaluation.

Since our CATE estimates are structural parameters, we can relatively compare the performance of a

policy π with any given baseline policy. Let Ȳ (j) denote the average observed for outcome j in the data.

We can write:

ρj(π)− Ȳ (j) =
1

N

N∑
i=1

(π(Xi)−Wi) τj(Xi), (7)

where the elements of this sum are only non-zero when the two policies disagree, i.e., π(Xi) ̸= Wi.

Although this approach to policy evaluation has theoretical guarantees such as consistency and unbiased-

ness, there are a few practical limitations that we must take into account. First, like other high-capacity

learners, Causal Forests always face the possibility of overfitting. As a result, we need a reliable approach

to evaluate the performance of policies out-of-sample that is robust to overfitting bias. More subtly, even

if the CATE estimates do not exhibit overfitting bias, using the same data for policy identification and

policy evaluation can result in model-based biases. That is, the policy identifier may exploit the variation

in random noise to generate a policy. If we evaluate the performance of the policy using the same set of

estimates, our policy evaluation is subject to the same type of model-based error. Thus, it is important to

use a policy evaluation approach that is generalizable and less model-based.

To address this challenge, we use the Inverse Propensity Scoring (IPS) estimator defined in Definition

5 as follows:

ρ̂IPS
j (π;D) = 1

N

∑
i∈D

(
π(Xi)Wi

e(Xi)
+

(1− π(Xi))(1−Wi)

1− e(Xi)

)
Y

(j)
i .

IPS provides an unbiased estimator of the expected outcome under any policy π. Notably, IPS is a model-

free estimator as it does not rely on any outcome model to estimate the outcome under a given policy.

Instead, it uses actual outcomes from the data and weights them based on their inverse propensity score

to consistently estimate what the expected outcome would have been had policy π been implemented.10

Since the IPS estimator is defined on the data D, we can easily evaluate both the in-sample and out-of-

sample performance of different policies. In particular, we randomly split our data into two sets, where

60% of the observations construct the training data DTrain, and the remaining 40% constitute the test data

DTest. We address the model-based error by performing CATE estimation and policy identification on

10Please see Rafieian and Yoganarasimhan (2023) for a detailed explanation of the intuition behind this estimator.
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the training data and evaluating its performance on separate held-out test data. Besides its robustness to

model-based errors, our approach is useful as it mimics the practice of real-time policy-making, where

the platform uses a batch of data to identify the policies and assign policies in real-time (test data). Thus,

platforms can readily apply our framework.

5.2 Policy Identification and Benchmarks

In this section, we identify different sets of policies using the training data and evaluate them on both

training and test data. To identify policies using only training data, we need to re-estimate CATE for both

Ad Consumption and Video Consumption outcomes on the training data. This ensures that the obser-

vations on the held-out test set are not used to estimate CATE. Let τ̂Train
A and τ̂Train

V denote the estimated

CATE functions using the training data for Ad Consumption and Video Consumption outcomes, respec-

tively. We use these estimates to identify different sets of policies. We present a short description of these

policies as follows, and refer the reader to Web Appendix E for greater details:

• Scalarization with Causal Estimates (MO-SCE): We use B = {(β, 1− β) | β = i/500, 0 ≤ i ≤ 500}

as the full set of weights and run Algorithm 1 using the CATE estimates for both outcomes as inputs.

The output is a set of policies denoted by ΠMO-SCE containing 501 policies.

• Scalarization with Policy Learning (MO-SPL): We use the same B, but use the policy learning ap-

proach to identify policies. We use D = {Xi,Wi, , e(Xi), τ̂
Train
A (Xi), τ̂

Train
V (Xi), Y

(A)
i , Y

(V )
i } as the

input for MO-SPL.11 Unlike MO-SCE, we do not restrict ourselves to linear models. We use XG-

Boost as our learning algorithm for the classification task in Algorithm 2. The output is a set of

policies denoted by ΠMO-SPL containing 501 policies.

For policy comparison and benchmarking, we consider the following policies:

• Single-Objective for Ad Consumption (SO-AC): This is the personalized policy for Ad Consumption,

which we can define as πSO-AC(Xi) = 1(τ̂Train
A (Xi) ≥ 0). This policy is the same as the MO-SCE

policy when β = 1 (weight for the Ad Consumption objective).

• Single-Objective for Video Consumption (SO-VC): This is the personalized policy for Video Con-

sumption, which we can define as πSO-VC(Xi) = 1(τ̂Train
V (Xi) ≥ 0). This policy is the same as the

11Normally, one could drop the CATE estimates from inputs. However, the model with CATE estimates ensures a better
performance, so we include them as inputs.
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MO-SCE policy when β = 0.

• Mixed Strategy Single Objective (SO-Mix): For any α ∈ [0, 1], we use a mixed-strategy policy that

uses πSO-AC(·) with probability α, and πSO-VC(·) with probability 1 − α. For consistency with our

main policies, we use α ∈ {i/500}500i=0 to generate the set of policies ΠSO-Mix.

• Random Policy (Random): For any α ∈ [0, 1], we use a mixed-strategy policy that uses the treatment

condition (Skippable/Long) with probability α and the control condition (Non-Skippable/Short) with

probability 1− α. For consistency, we use α ∈ {i/500}500i=0 to generate the set ΠRandom.

Overall, we have four sets of policies (ΠMO-SCE, ΠMO-SPL, ΠSO-Mix, and ΠRandom), and two policies (πSO-AC(·)

and πSO-VC(·)). The single-objective uniform policies and the fully random policies are also helpful

benchmarks to use. However, as shown earlier, single-objective personalized policies are almost iden-

tical to single-objective uniform policies in our empirical example with Ad Consumption and Video

Consumption as the objectives. Thus, to avoid clutter, we do not include these benchmarks.

5.3 Policy Comparison Results

For any policy π, we can use the IPS estimator in Definition 5 to estimate the expected Video Con-

sumption and expected Ad Consumption under that policy on both training and test data. The resulting

points are (ρ̂IPS
A (π;DTrain), ρ̂

IPS
V (π;DTrain)) and (ρ̂IPS

A (π;DTest), ρ̂
IPS
V (π;DTest)) in training and test data, re-

spectively. In addition to the policies described in the previous section, we use two other reference

points: (1) Data, which shows the average outcomes for the experiment run in our data, and (2) Utopia,

which is the best achievable point and takes the expected outcome under the single-objective personal-

ized policy for that outcome. Figure 10 shows the expected outcomes for these two points, along with the

expected outcomes under all policies described in the previous section, separately for the training and test

data. Green circles constitute the Pareto frontier under Scalarization with Causal Estimates (MO-SCE)

policy, whereas purple pluses constitute the Pareto frontier under Scalarization with Policy Learning

(MO-SPL).12 Since both single-objective personalized policies are almost the same as the uniform pol-

icy, the set of SO-Mix and Random policies perform very similarly. This is not generally the case if the

single-objective personalized policies are non-uniform.

12The existence of some dominated points within the identified Pareto frontier is expected because we use a separate model-
free approach for policy evaluation that captures the randomness in the data.
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Figure 10. Policy Evaluation on Training and Test Data
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(a) Training Data for Evaluation
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(b) Test Data for Evaluation

When comparing these Pareto frontiers to the single-objective policies, we see substantial gains as

most Mixed Strategy Single Objective (SO-Mix) policies are dominated by the Pareto frontier with a

relatively large margin. To quantify these gains, we employ two approaches. First, we use the Covered

Area Proportion (CAP) measure defined in §3.3 and calculate the proportion of the area covered between

the Mixed Strategy Single Objective (SO-Mix) and Utopia. On the training set, we find 43% and 48%

CAP measure for MO-SCE and MO-SPL, respectively. The CAP measure is 43% for both policies on

the test set. We see a train-test performance discrepancy for MO-SPL because it uses a more flexible

learner, which is more likely to overfit on the training data, whereas MO-SCE uses a linear classification

that is less prone to overfitting. The identical performance on the test set is expected as both algorithms

optimize the same objective in different ways. Overall, a 43% CAP measure on the test set means that

the multi-objective personalization algorithms push the Pareto frontier and generate a number of policies

that create significant gains in one outcome without hurting the other outcome.

Our second approach to demonstrate the value of multi-objective personalization focuses on identi-

fying policies that improve one outcome without compromising the other one. It is important to notice

that a platform cannot simultaneously achieve all the points on the Pareto frontiers shown in Figure 10.

This is because the platform can select only one policy. The value of multi-objective personalization is

in providing a complete picture for a policymaker to choose one of the policies on the Pareto frontier

that best achieves their objectives. To that end, we highlight three findings that substantially improve one

31



outcome without hurting the other:

High Video Consumption, Medium Ad Consumption: From Figure 10a, we see that the policymaker

can choose a variety of policies with great Video Consumption performance while improving expected

Ad Consumption. For example, the policymaker can choose one of the MO-SCE policies with β = 0.246

that results in 4.8% lower Video Consumption compared to the Single-Objective Video Consumption

(SO-VC) policy, while increasing Ad Consumption by 60.0% on the training data. When comparing the

performance of this policy (πMO-SCE
0.246 ) with that of the Single-Objective Video Consumption (πSO-VC) on

the test data, we find that it will result in a drop of 4.4% in Video Consumption while increasing Ad

Consumption by 61.0% (from 0.57 to 0.92, or alternatively from 8.58 to 13.82 seconds).

High Ad Consumption, Medium Video Consumption: On the right end of Figure 10a, the policymaker

can choose a policy from MO-SPL with β = 0.420 that achieves a 58.2% improvement in the expected

Video Consumption compared to the Single-Objective Ad Consumption (SO-AC) policy, while only

losing 13.3% in the expected Ad Consumption. On the test data, the policy πMO-SPL
0.420 performs 53.2% better

in terms of Video Consumption than the (πSO-AC) policy, at the expense of 15.2% worse performance in

terms of the expected Ad Consumption. Notably, one could consider Video Q1 Reached as a hypothetical

point where the platform can place a mid-roll ad. We use the IPS estimator for this outcome to evaluate

the proportion of users who reach that point and generate a mid-roll impression under both πMO-SPL
0.420 and

SO-AC. Interestingly, we find that the proportion of users who reach the first quarter of the video is 22.7%

under πMO-SPL
0.420 . In contrast, this proportion is 14.7% under SO-AC, suggesting a 55.5% increase in the

number of potential mid-roll ad impressions that would be generated under πMO-SPL
0.420 relative to SO-AC.

High Video Consumption, 15 Seconds Ad Consumption: A useful feature of multi-objective personal-

ization is that we can fix a value for one objective and examine the performance in terms of the other ob-

jective. Since Ad Consumption cannot technically be more than 15 seconds in the Non-Skippable/Short

ad condition, setting Ad Consumption to 15 seconds would be a reasonable objective. We find that the

MO-SCE policy with β = 0.274 achieves 15 seconds of expected Ad Consumption on both training and

test sets. We compare the performance of policy πMO-SCE
0.274 with the two single-objective policies. Com-

pared to the Single-Objective Video Consumption (SOVC) policy, it improves the expected Ad Consump-

tion by 74.0%, while only reducing the Video Consumption by 9.5%, as measured on the test data. On
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the other end, policy πMO-SCE
0.274 improves Video Consumption by 81.9% compared to the Single-Objective

Ad Consumption (SOAC) policy, while losing 29.2% in Ad Consumption.

In summary, we find that multi-objective personalization results in substantial gains in one objective

without sacrificing too much in the other objective. Intuitively, multi-objective personalized policies

achieve this by correctly identifying the points in the data whose gains in one objective outweigh their

loss in the other objective. From a practical standpoint, platforms can use a batch of data to estimate

the primitives, identify the Pareto frontier, and then decide which policy on the Pareto frontier is more

desirable.

5.4 Other Case Studies

We demonstrate that the platform can create substantial value by using multi-objective personalization,

even in a setting with an almost perfect substitution between the two objectives. As shown earlier, for

over 96% of the data points in our data, we observe some degree of substitution between Ad Consumption

and Video Consumption. The gains can be significantly larger when the two objectives are less in conflict

with each other. To demonstrate this point, we focus on another set of objectives in Web Appendix F: (1)

Second 15 Complete, and (2) Video Consumption. Since many platforms charge advertisers once their ad

is watched for 15 seconds (e.g., Facebook), using these two objectives for multi-objective personalization

is reasonable for profit-maximizing platforms. We present the results of this practice in Web Appendix F

and document substantial gains from a multi-objective personalization policy.

5.5 Implications

Advancements in marketing measurement allow firms to track multiple outcomes of interest at the indi-

vidual level. For example, a social media platform can measure how much time a user spends on each

post, how much ad revenue the user generates, and how many posts the user writes and shares, all of

which are presumably outcomes the platform wants to optimize. Naturally, these outcomes have some

conflict with each other. We present a general framework for multi-objective personalization that can be

used by any policymaker deciding how to assign interventions to individuals. Our proposed approach is

guaranteed to identify the Pareto frontier of policies in terms of multiple outcomes, which helps man-

agers eliminate all the dominated policies. Further, platforms can identify the Pareto optimal policies on
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a batch of training data and use it as a decision-making dashboard. This feature of our framework allows

managers to select the Pareto optimal policy that best balances their objective and then roll it out on the

test data.

More specific to our empirical setting, our paper has several implications for video advertising plat-

forms. These platforms often have multiple ad- and video-related objectives, some of which are in direct

conflict with the other ones. In our study, we demonstrated a substitution pattern between sponsored and

organic content consumption and showed that the platform could create value using our multi-objective

personalization framework. Importantly, our framework is fairly general, and a platform can use it across

a range of scenarios. For example, if the price per second for Ad Consumption is different across ad

formats, the platform needs to rely on a weighted Ad Consumption measure that reflects ad revenues.

Our framework can easily accommodate such modifications in the outcome of interest. More broadly,

some platforms may be interested in increasing the rate at which the user reaches a certain point within

the ad because they charge advertisers based on that rule. In our study, we can consider the 15-second

threshold and perform multi-objective personalization for Second 15 Complete and Video Consumption

as our main outcomes of interest (please see Web Appendix F for the results from this practice). More

generally, the platform can have more than two objectives. For example, many streaming platforms also

have a subscription-based ad-free version as an alternate revenue channel. As a result, they may be in-

terested in optimizing not only ad and video consumption but also subscription revenue. Our framework

can easily be extended to those settings.

Besides offering a prescriptive solution to platforms given the set of objectives, our paper has im-

portant market design implications for video advertising platforms. These platforms generally sell ads

through auctions. Any auction is characterized by an allocation rule and a payment rule. Our paper

highlights why the allocation rule should not be only based on the ad performance but also on the exter-

nality it imposes on the system. Prior literature on advertising auctions has studied different forms of ad

allocation that capture the externality an ad exposure imposes on other ads (Wilbur et al. 2013, Rafieian

2020). Our paper also suggests another form of externality imposed by ads on content creators, which can

affect the supply of ad impressions for the platform in the long run. Platforms can incorporate all these

externalities in their allocation and present exact or approximate solutions to this allocation problem. An
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example of an approximate solution would be capturing these externalities in the quality scores assigned

to ads.

These externalities have immediate implications for the payment mechanism in video advertising

auctions. In particular, if the platform incorporates the externalities in ad allocation, they need to adjust

payments to achieve properties such as truth-telling. Another important implication of our work is for

the payment rule in these problems. That is, the platform needs to decide when to charge the advertis-

ers. Some platforms use cutoff-based rules where the advertiser is charged for skippable ads if the user

reaches the Second 30 of the ad. Part of the reason for having these rules in place is to account for the

externalities an ad exposure can impose on content creators. Given the substitution between ad and video

consumption, our findings suggest that a consumption-based payment rule can better account for these

externalities. Furthermore, designing an auction with clearer guarantees under a consumption-based pay-

ment rule would be easier than in environments with arbitrary cutoff-based rules.

6 Conclusions

Platforms often want to optimize multiple outcomes. Although optimizing all these outcomes seems

desirable, finding an optimal intervention for all desired outcomes is often challenging. In some cases,

multiple outcomes of interest are in some form of structural conflict. In this paper, we offer personal-

ization as a solution to this problem and propose a multi-objective personalization framework that can

reliably identify the Pareto frontier of personalized policies in terms of multiple outcomes. In particular,

we propose two algorithms Scalarization with Causal Estimates (MO-SCE) and Scalarization with Policy

Learning (MO-SPL) that combine the insights from the causal machine learning literature with that of

multi-objective optimization and offer solutions with theoretical guarantees. Intuitively, these algorithms

exploit the magnitude of the substitution at the individual level to assign individuals to policies.

We apply our framework to a canonical conflict in outcomes between sponsored vs. organic content

consumption. In collaboration with vdo.ai, we conducted randomized experiments where users were

randomly assigned to either the Skippable/Long or Non-Skippable/Short versions of the same ad. We

document a high degree of substitution between two key outcomes Ad Consumption and Video Consump-

tion, even at the individual level. We then apply our multi-objective personalization algorithms and find
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that the resulting policies improve the outcome in one dimension compared to single-objective personal-

ized policies without hurting the outcome in the other dimension. In particular, we show that compared

to a single-objective personalized policy that only optimizes Video Consumption, there is a policy on

the identified Pareto frontier that improves Ad Consumption by 61.0% while only reducing Video Con-

sumption by 4.4%. Likewise, we document that compared to the single-objective personalized policy

that only optimizes Ad Consumption, there is a multi-objective personalized policy that increases Video

Consumption by 53.2% while only decreasing the Ad Consumption outcome by 15.2%. We discuss the

implications and how the platform can use our framework for optimal decision-making in real-time.

Our paper makes several contributions to the literature. Methodologically, we combine insights from

the multi-objective optimization literature with causal machine learning and present a framework for

multi-objective personalization. Our proposed algorithms take approaches for Conditional Average Treat-

ment Effect estimation and policy learning and identify a set of policies that are Pareto optimal. From a

managerial standpoint, our framework is applicable to other settings where conflicting treatment effects

on multiple outcomes are of managerial concern. Our framework offers policymakers and managers the

flexibility to assess the Pareto frontier separately on a batch of training data and select policies that align

with their desired balance between outcomes to roll out. Substantively, we showcase a new area where

personalization can create value. Unlike prior literature on personalization that primarily emphasizes the

value of personalization through covariate richness, we show how a policymaker could use the variation

in multiple outcomes to differentiate between users and create value through personalization in scenar-

ios where multiple outcomes exhibit substantial conflict. Particularly, we establish notable gains in one

outcome without compromising another in a context marked by significant substitution effects. Finally,

our paper contributes to the literature on the interplay between sponsored and organic consumption by

demonstrating how much personalization can help manage a structural conflict between outcomes. Our

findings have important market design implications for advertising platforms, as they highlight the im-

portance of a multi-objective approach for ad allocation and payment rules.

Nevertheless, our paper has limitations that serve as excellent avenues for future research. First, al-

though our proposed scalarization algorithms are scalable for most practical settings where we want to

optimize two or three objectives, the set of weights becomes exponentially large as we want to incor-
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porate more objectives. Future research can investigate more efficient ways of using weights as well as

approaches to incorporate some domain knowledge to improve the scalability of the algorithm. Second,

as is common in the personalization literature, our algorithms require the joint distribution of covariates

and potential outcomes to be fixed, abstracting from cases where users act strategically to receive the

personalized treatments they prefer in the long run. Future research can extend our framework to such

strategic settings similar to Munro (2024). Finally, although we use a rich-feedback environment on the

logged consumption of ads and videos, we do not have data on whether users pay attention to the screen

as in McGranaghan et al. (2022). Using attention data can further illuminate mechanisms behind users’

ad and video consumption.
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Web Appendix
A Supplementary Materials for Multi-Objective Personalization Framework

A.1 Proof for Proposition 1

Let ρ(π) ∈ RK denote the K-dimensional vector that represents the expected outcomes under policy
π, such that ρ(π) = (ρ1(π), ρ2(π), . . . , ρK(π)). Prior literature has shown that if the outcome space is
convex, the linear scalarization approach will be able to recover the complete Pareto frontier (Censor
1977, Súkenı́k and Lampert 2022). Therefore, we only need to show that the outcome space {ρ(π)}π∈Π
is convex. To do so, we need to show for any two points in the outcome space, all the points on the
line between the two also exist in the outcome space. More precisely, for any point r ∈ RK on the line
between ρ(π1) and ρ(π2), we need to show that there is a policy π∗ such that r = ρ(π∗). We know
that for any such point r ∈ RK on the line between ρ(π1) and ρ(π2), there exists a λ ∈ [0, 1] such that
r = λρ(π1)+ (1−λ)ρ(π2). Therefore, it is sufficient to show that we can construct a policy π∗ ∈ Π that
achieves the outcome λρ(π1) + (1− λ)ρ(π2). A natural candidate for π∗ is the probabilistic policy that
plays a mixed strategy between π1 and π2, such that:

π∗(x) = λπ1(x) + (1− λ)π2(x) (8)

We now show that the expected outcomes under policy π∗ is the same as r = λρ(π1) + (1 − λ)ρ(π2).
Equation (8) shows the probability of treatment assignment under policy π∗(·). We can write the proba-
bility of control assignment under this policy as follows:

1− π∗(x) = λ
(
1− π1(x)

)
+ (1− λ)

(
1− π2(x)

)
(9)

Now, for any outcome Yi, we can write:

ρ(π∗) =E
[
π∗(Xi)Yi(1) +

(
1− π∗(Xi)

)
Yi(0)

]
=E

[(
λπ1(Xi) + (1− λ)π2(Xi)

)
Yi(1) +

(
λ
(
1− π1(Xi)

)
+ (1− λ)

(
1− π2(Xi)

))
Yi(0)

]
=E

[
λ
(
π1(Xi)Yi(1) +

(
1− π1(Xi)

)
Yi(0)

)]
+

E
[((

1− λ
)(

π2(Xi)Yi(1) +
(
1− π2(Xi)

)
Yi(0)

))]
=λρ(π1) + (1− λ)ρ(π2),

(10)

The equation above holds for j’s, so we have ρ(π) = r, and this completes the proof.



A.2 Proof for Proposition 2

Proof. For any vector of covariates x, the joint objective in Equation (2) can be written as follows:

πS
β = argmax

π

K∑
j=1

βkρj(π)

= argmax
π

K∑
j=1

βjE
[
π(Xi)Y

(j)
i (1) + (1− π(Xi))Y

(j)
i (0)

]
= argmax

π

K∑
j=1

βjE
[
Y

(j)
i (0) + π(Xi)

(
Y

(j)
i (1)− Y

(j)
i (0)

)]
= argmax

π

K∑
j=1

βj (ρj(0) + τj(x)π(x))

= argmax
π

K∑
j=1

βjτj(x)π(x),

(11)

where the final line uses the fact that ρj(0) is policy-invariant. This implies that the optimal policy that
maximizes Equation (2) is the one maximizing

∑K
j=1 βjτj(x)π(x). Therefore, the optimal policy is equal

to treatment when
∑K

j=1 βjτj(x) ≥ 0, i.e., πβ = 1(
∑K

j=1 βjτj(x) ≥ 0).

A.3 Illustrative Example for Scalarization with Causal Estimates Algorithm

Consider a simple case with three data points. For each point, we have CATE estimates for two out-
comes. Let T denote the set of CATE estimates on both outcomes for all three points, such that T =

{(1, 2), (2,−1), (2,−3)}. We want to run our Scalarization with Causal Estimates (MO-SCE). We set B
such that β1 ∈ {0, 1/2, 1}. As such, our MO-SCE algorithm generates three separate policies. Figure A1
illustrates the lines that determine these three policies. We discuss each below:

Figure A1. Illustrative Example for the Scalarization with Causal Estimates Algorithm
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• Case 1: β1 = 0. In this case, the weight for Outcome 1 is zero, and the weight for Outcome 2 is one.
The data point (1, 2) is above the line (i.e., it satisfies β1τ1 + (1− β1)τ2 ≥ 0 for β1 = 0), so it will be
assigned to the treatment condition. The two other points will be assigned to the control condition.

• Case 2: β1 = 1/2. In this case, the weight for both outcomes is 1/2. As shown in Figure A1, points
(1, 2) and (2,−1) are above the line corresponding to β1 = 1/2, so these two points will be assigned
to the treatment condition. The point (2,−3) is below the line, so it will be assigned to the control
condition.

• Case 3: β1 = 1. In this case, we only consider Outcome 1. As shown in Figure A1, all three points
satisfy β1τ1 + (1− β1)τ2 ≥ 0, so they will all be assigned to the treatment condition.

Overall, the MO-SCE algorithm provides three policies as the output. These policies correspond to dif-
ferent points on the Pareto frontier of the outcome space.

A.4 Proof for Proposition 3

Proof. Since ρ̂IPS
j (π;D) is an unbiased estimator for the expected outcome ρj(π), we can easily see that∑K

j=1 βj ρ̂
IPS
j (π;D) is also an unbiased estimator for our main objective

∑K
j=1 βjρj(π) in Equation (2).

Therefore, we can write the empirical version of our target
∑K

j=1 βjρj(π) as follows:

K∑
j=1

βj ρ̂
IPS
j (π;D) =

K∑
j=1

βj
1

ND

∑
i∈D

(
π(Xi)Wi

e(Xi)
+

(1− π(Xi)) (1−Wi)

1− e(Xi)

)
Y

(j)
i

=
1

ND

∑
i∈D

(
π(Xi)Wi

e(Xi)
+

(1− π(Xi)) (1−Wi)

1− e(Xi)

)( K∑
j=1

βjY
(j)
i

) (12)

The expression above implies that we can think of the optimization problem in Equation (2) as a single-
objective policy learning problem with the outcome being

∑K
j=1 βjY

(j)
i . Therefore, this policy learning

problem is equivalent to single-objective policy learning. We now use the derivation in Athey and Wa-
ger (2021) to show that the optimal solution to this problem is the same as the optimal solution to a
weighted classification problem. For brevity, we drop D from ρ̂j(·;D). Let ρj(0) and ρj(1) denote the
expected outcome j under the uniform control and uniform treatment policies, respectively. We note
that optimizing argmaxπ

∑K
j=1 βjρj(π) is the same as optimizing its advantage over uniform policies

argmaxπ
∑K

j=1 2βjρj(π) −
∑K

j=1 βj(ρj(1) + ρj(0)), since the second summation is policy invariant.
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Therefore, we can rewrite our target objective as follows:

argmax
π

K∑
j=1

βj ρ̂
IPS
j (π) = argmax

π

K∑
j=1

2βj ρ̂
IPS
j (π)−

K∑
j=1

βj

(
ρ̂IPS
j (1) + ρ̂IPS

j (0)
)

= argmax
π

1

ND

∑
i∈D

2

(
π(Xi)Wi

e(Xi)
+

(1− π(Xi)) (1−Wi)

1− e(Xi)

)( K∑
j=1

βjY
(j)
i

)

− 1

ND

∑
i∈D

(
Wi

e(Xi)

)( K∑
j=1

βjY
(j)
i

)

− 1

ND

∑
i∈D

(
(1−Wi)

1− e(Xi)

)( K∑
j=1

βjY
(j)
i

)

= argmax
π

1

ND

∑
i∈D

(
(2π(Xi)− 1)Wi

e(Xi)

)( K∑
j=1

βjY
(j)
i

)

+
1

ND

∑
i∈D

(
(1− 2π(Xi)) (1−Wi)

1− e(Xi)

)( K∑
j=1

βjY
(j)
i

)

= argmax
π

(2π(Xi)− 1)

(
Wi

e(Xi)
− (1−Wi)

1− e(Xi)

)( K∑
j=1

βjY
(j)
i

)
= argmax

π
(2π(Xi)− 1) Γi

= argmax
π

(2π(Xi)− 1)Li︸ ︷︷ ︸
Classification Objective

|Γi|︸︷︷︸
Observation Weight

(13)

The alternative objective in the first line allows us to use simple algebraic simplifications to reach a
classification objective (2π(Xi)− 1)Li. Therefore, we show that optimizing the scalarized objective is
equivalent to the weighted classification in Proposition 3 and complete the proof.

A.5 Illustrative Example for Scalarization with Policy Learning Algorithm

We now provide an illustrative example for the Scalarization with Policy Learning (MO-SPL) algorithm.
We revisit the same stylized example in Appendix A.3, where T = {(1, 2), (2,−1), (2,−3)}. The illus-
trative example in this case is a little more challenging to present as we need other pieces such as the
actual treatment assignment in the data for the data points and their outcomes. Suppose the vector of
treatment assignments in the data is W = (1, 0, 1), such that points (1, 2) and (2,−3) are assigned to
the treatment with the propensity score 1/2, and the point (2,−1) is assigned to the control condition
with the propensity score 1/2. For outcomes, we consider a simple case where Y (j) = 1 +W ⊙ τj for
Outcome j ∈ {1, 2}, where ⊙ is the element-wise product. As such, we have the following outcomes:
Y (1) = 1 + (1, 0, 1)⊙ (1, 2, 2) = (2, 1, 3) and Y (2) = 1 + (1, 0, 1)⊙ (2,−1,−3) = (3, 1,−2).

To run our MO-SPL algorithm, we set B where β1 ∈ {0, 1/2, 1}. For each β1, we generate a separate
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policy. We discuss how these policies are generated in Algorithm 2 as follows:

• Case 1: β1 = 0. In this case, the weight for Outcome 1 is zero, and the weight for Outcome 2 is one.
We first calculate Γ in this case, which consists of two parts: (1) a difference between the propensity
weights Wi/e(Xi)−(1−Wi)/(1− e(Xi)), and (2) a weighted outcome

∑K
j=1 βjY

(j)
i . For data points

assigned to the treatment, the difference between the propensity weights is 1/(0.5) − 0/(0.5) = 2,
and for data points assigned to the control, this difference is 0/(0.5)− (1− 0)/(0.5) = −2.

Γ = (2× 3,−2× 1, 2×−2) = (6,−2,−4) (14)

Therefore, the labels will be (1,−1,−1) with weights (6, 2, 4). We can then run this classification
with any set of covariates we want.

• Case 2: β1 = 1/2. In this case, the weight for both outcomes is 1/2. We can calculate Γ as follows:

Γ =

(
2×

(
1

2
2 +

1

2
3

)
,−2×

(
1

2
1 +

1

2
1

)
, 2×

(
1

2
3 +

1

2
(−2)

))
= (5,−4, 1) (15)

Therefore, the labels will be (1,−1, 1) and the weights for our classification task are (5, 4, 1).

• Case 3: β1 = 1. In this case, we only consider Outcome 1. We calculate Γ as follows:

Γ = (2× 2,−2× 1, 2× 3) = (2,−2, 6) (16)

The labels will be (1,−1, 1), similar to the previous case, but the weights for our classification task
are (2, 2, 6).

Overall, the MO-SPL provides three policies as the output. These policies correspond to different points
on the Pareto frontier of the outcome space.

B Description of boAt Ads in the Experiment
In this section, we present supplementary information about the advertised brand and product. boAt is an
audio and wearables brand that offers different wireless earphones, earbuds, headphones, smartwatches,
and home audio. The advertised product, Watch Xtend, is a smartwatch with a built-in Alexa voice
assistant. The ad content in both conditions presents a series of takes where different characters use the
Alexa voice assistant in different contexts, highlighting the utilitarian and lifestyle aspects of the product.
The primary objective of the ad campaign is to generate greater awareness about the product and brand.
As such, although the ad is clickable, it is not a performance ad with a clear call for action. A click only
takes users to the product’s website for more information. Figure A2 shows a snapshot of different parts
of both ad versions.
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Figure A2. Screenshots of Non-Skippable/Short and Skippable/Long Ads Used in the Experiment.

(a) Non-Skippable/Short (b) Skippable/Long

C Randomization Check
In this section, we use the pre-treatment variables to check whether randomization in our experiment has
been implemented properly. In particular, we want to perform randomization checks on the sample used
for our main analysis. To do so, we need to check if there is any discrepancy in the distribution of the pre-
treatment covariates across the two treatment conditions we use in our main analysis: Skippable/Long
and Non-Skippable/Short ad formats. In our setting, all the pre-treatment variables are categorical. As
such, we want to examine if there is any significant difference in the proportions of each subcategory
under Skippable/Long and Non-Skippable/Short conditions. We use three different approaches to assess
randomization checks in our data:

• Hypothesis Testing Approach: Our first approach uses the hypothesis testing framework. For any
subcategory s, let πs,1 and πs,0 denote the proportion of observations belonging to the subcategory
in the Skippable/Long and Non-Skippable/Short conditions, respectively. If randomization has been
done correctly, we will fail to reject the following null hypothesis: H0 : πs,0 = πs,1. First, we con-
duct Fisher’s exact test for each subcategory. Since we run multiple hypotheses, we expect a fraction
of them to be significant even if the null hypothesis is true. Of 837 separate tests conducted, only
8 rejected the null hypothesis. After adjusting for multiple hypothesis testing using the Benjamini-
Hochberg approach (Benjamini and Hochberg 1995), no adjusted p-value was below 0.05.13 In Table
A1, we present the proportions under Skippable/Long and Non-Skippable/Short for the top subcate-
gories identified in Table 1, as well as the Fisher and Z-test p-values for their corresponding hypothe-
sis tests. As shown in this table, all the p-values are greater than 0.05, indicating that we fail to reject
the null hypothesis that the proportions are the same under Skippable/Long and Non-Skippable/Short
conditions. This evidence suggests that randomization has been implemented correctly in our data.

• Standardized Bias Approach: In our second approach, we use the measure of Standardized Bias (SB),
which is commonly used in the literature to assess covariate balance. Standardized Bias is equal

13We arrive at the same conclusion when we use Z-test for comparing two proportions.
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Table A1. Randomization Checks for Top Subcategories

Subcategory Proportion Under p-value Standardized
NS SL Fisher Z-test Bias

Hour of Day: 7AM (MST) 0.0776 0.0777 0.9606 0.9578 0.0005
Hour of Day: 6AM (MST) 0.0687 0.0676 0.6242 0.6140 0.0044
Hour of Day: 8AM (MST) 0.0675 0.0677 0.9440 0.9387 0.0007

Date: 07/21/2022 0.3916 0.3921 0.9136 0.9124 0.0010
Date: 07/22/2022 0.3718 0.3722 0.9128 0.9076 0.0010
Date: 07/20/2022 0.1479 0.1459 0.5090 0.5083 0.0058

City: Mumbai 0.5194 0.5180 0.7506 0.7461 0.0029
City: Delhi 0.0738 0.0772 0.1416 0.1409 0.0130
City: Hyderabad 0.0698 0.0668 0.1782 0.1745 0.0120

Country: India 0.9990 0.9993 0.2854 0.2289 0.0106
Country: US 0.0006 0.0006 1.0000 0.9842 0.0002
Country: Australia 0.0001 0.0000 0.5004 0.1573 0.0121

OS: Android 0.7974 0.7929 0.2167 0.2135 0.0110
OS: Windows 0.1307 0.1335 0.3550 0.3522 0.0082
OS: iPhone 0.0533 0.0530 0.9217 0.9123 0.0010

Note: NS and SL are short acronyms for Non-Skippable/Short and Skippable/Long, re-
spectively

to the absolute difference between the means of two groups divided by the standard deviation of the
covariate for the pooled sample. The common norm in the literature is to consider a Standardized Bias
below 0.2 or 0.1 as evidence for covariate balance (McCaffrey et al. 2013). In our setting, we find
that the maximum Standardized Bias was 0.026, which indicates that we have a covariate balance for
all the pre-treatment covariates using this approach. In Table A1, we present the Standardized Bias
for the top subcategories. As shown in the table, all values are substantially lower than the acceptable
thresholds.

• Regression Approach: We use a regression approach to regress the treatment assignment on all the
pre-treatment variables. If randomization has been done correctly, the pre-treatment variables will
have no predictive power in explaining the treatment assignment. We can statistically test that by
using the F-test of the regression model. We find that the F-statistic is equal to 1.02 with a p-value
of 0.32, which indicates that the pre-treatment variables have no predictive power in predicting the
treatment assignment and provides evidence for the validity of randomization in our study.

It is worth emphasizing that the randomization checks have all been performed on the focal sample
used for the main analysis. However, as discussed in the main text, we use some sampling to arrive at our
final data, such as dropping users who use ad blockers or face technical issues. Theoretically, we expect
our randomization checks to hold in the original data, as the actual randomization was implemented on
that data with the observations that were dropped in our sample. We perform the same analysis for the
original sample and arrive at the same insight that randomization has been correctly performed.
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Table A2. Description of Outcome Variables.

No. Outcome Description

1 Ad Consumption Numerical variable indicating how much ad content the user has consumed in
discrete 15-second units.

2 Second 15 Complete Binary variable indicating whether the user has reached the 15th second of the ad.
3 Ad Complete Binary variable indicating whether the user has completed watching the entire ad.
4 Ad Click Binary variable indicating whether the user has clicked on the ad.

5 Video Consumption Numerical variable indicating how many quarters of the video have been watched
by the user.

6 Video Start Binary variable indicating whether the user has started watching the organic video
content.

7 Video Q1 Reached Binary variable indicating whether the user has reached the first quarter (25%) of
the video.

8 Video Q2 Reached Binary variable indicating whether the user has reached the second quarter (50%)
of the video.

9 Video Q3 Reached Binary variable indicating whether the user has reached the third quarter (75%) of
the video.

10 Video Q4 Reached Binary variable indicating whether the user has reached the fourth quarter (100%)
of the video, i.e., completed the video.

D Supplementary Material for Experiment Analysis

D.1 Outcome Variables

We have two sets of outcomes: (1) ad-related outcomes and (2) video-related outcomes. The former
demonstrates user behavior regarding the ad (e.g., how much ad content to consume, click), whereas the
latter captures user behavior regarding the video (e.g., how much video content to consume). Table A2
presents a list of our outcome variables along with their description. The first four outcome variables are
ad-related, whereas outcomes 5–10 are video-related. For each outcome variable Y , we consider a set of
potential outcomes Y (w), where w is the value of our treatment variable.

D.2 Interpretation of Average Treatment Effect

In this section, we provide a more extensive interpretation of findings presented in Table 2. We expand on
our earlier discussion in the main text and provide a more in-depth analysis and interpretation of results.
We separate the analysis by outcomes and present the discussion for each separately as follows:

• Ad Consumption: Theoretically, it is unclear which ad format leads to higher Ad Consumption. On
the one hand, a longer ad has an inherent advantage as it can be consumed for a longer time. On
the other hand, the ability to skip the long ad after 5 seconds may result in lower consumption of the
longer ad. As indicated in Table 2, we find that the average consumption of the Skippable/Long ad is
significantly higher than that of the Non-Skippable/Short ad, with the average treatment effect being
0.90× 15 = 13.50 seconds, which is approximately equal to the length of the short ad in our study.

• Second 15 Complete: We use the binary outcome Second 15 Complete, as defined in Table A2. With
the same length of consumption, we can better examine the role of the skippability option, as users in

vii



only one condition can skip the ad. The conventional wisdom is that the Skippable/Long ad format
will be less likely to consume 15 seconds of the ad. Surprisingly, we find the opposite pattern in the
second row of Table 2: despite the presence of the skip option in the Skippable/Long condition, the
completion rate of the first 15 seconds is significantly higher in Skippable/Long condition compared
to the Non-Skippable/Short condition. One outcome that explains this effect is the low ad skip rate:
we find that only 1.9% of users in the Skippable/Long ad condition skip the ad before the Second 15
checkpoint to start watching the video. This is different from other video streaming contexts, such
as YouTube, where users skip ads at a very high rate. However, this could explain a null treatment
effect. The significantly higher Second 15 Complete rate under Skippable/Long compared to Non-
Skippable/Short can be attributed to other factors, such as the difference in the video content for the
first 15 seconds.

• Ad Complete: In the third row of Table 2, we estimate the treatment effect on the outcome Ad Com-

plete. Theoretically, we expect a higher ad completion under Non-Skippable/Short ad because shorter
ads are easier to complete, and the inability to skip forces users in this condition to complete the ad
in order to watch the organic video content. As expected, we find that 53.5% of Non-Skippable/Short
ads are completed, whereas only 21.3% of Skippable/Long ads are completed. The difference is
largely significant.

• Ad Click: We focus on users’ click decision on ads as the final outcome (Ad Click). As discussed
earlier, the objective of the boAt ad campaign in our study is to generate more awareness. As such,
although the ad is clickable, it is not a performance ad with a clear call for action. A click only
takes users to the product’s website for more information. The fourth row of Table 2 compares the
performance of the two conditions in terms of Ad Click. Both ads generate around 0.1% click-through
rate (CTR), and the difference is not statistically significant.

• Video Consumption: Since we work with pre-roll ads, we expect the ad format to affect Video
Consumption. As indicated in Table 2, we find that users in the Skippable/Long condition con-
sume 0.38 quarters less than those in the Non-Skippable/Short condition. This is equivalent to a
0.38× 0.25× 100 = 9.5 percentage point difference in the video consumed. Our results are different
from prior studies on ad skippability have documented a higher rate of organic content consumption
when users are exposed to skippable ads (Pashkevich et al. 2012). The reason for the difference likely
comes from the fundamental difference between our setting and YouTube, where Pashkevich et al.
(2012) conducted their study. In our setting, the organic video is not necessarily the primary reason
why a user is in a session. As such, the more time they spend on advertising content, the less they
have for the organic video, suggesting a substitution pattern between these outcomes.

• Video Start: We find that users in the Non-Skippable/Short ad condition are more likely to start
the video than users in the Skippable/Long ad condition. Because users in the Skippable/Long ad
condition spend more time on the ad, they are less likely to be present at the beginning of the organic
video. Further, we note that 44.5% of users in the Non-Skippable/Short condition started watching
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Figure A3. Proportion and Confidence Intervals for Binary Outcomes Across Experimental Conditions

0.00

0.25

0.50

0.75

1.00

Sec 0 Sec 15 Sec 30 Sec 45 Sec 60
Ad Pixels Reached

P
ro

po
rt

io
n

Policy Non−Skippable/Short Skippable/Long

(a) Ad-Related Outcomes

0.00

0.25

0.50

0.75

1.00

Q0 Q1 Q2 Q3 Q4
Video Quarter Reached

P
ro

po
rt

io
n

Policy No−Ad Non−Skippable/Short Skippable/Long

(b) Video Related Outcomes

the video, which is lower than 53.5% who completed the ad, indicating that there is some dropout in
the transition from ad to video.

• Video Qj Reached: For any video quarter j, we define a binary variable Video Qj Reached to
break down the Video Consumption variable and measure the treatment effects at different points.
We find that the Skippable/Long ad results in a lower Video Qj Reached compared to the Non-
Skippable/Short ad for any j. The substitution pattern between Ad Consumption and Video Con-
sumption can explain this pattern.

We now visually summarize all the findings in Figure A3. In Figure A3a, we show the proportion of
users who reach a certain pixel for both Skippable/Long and Non-Skippable short ad formats. We notice
the higher survival rate at the completion of the Second 15 pixel for the Skippable/Long condition. This
figure also shows a decay rate at the subsequent pixels for the Skippable/Long ad condition.

Next, in Figure A3b, we visualize the proportion of users who reach a certain video pixel for Skip-
pable/Long and Non-Skippable/Short ad conditions, as well as these values for the No-Ad condition.
Please note that we cannot show the ad-related outcomes for the No-Ad condition, as there is no ad
shown by design. As a result, the video start rate is 1, and the fraction of surviving users decreases over
the course of the video. The fraction of users who reached each quarter of the video is significantly
higher for the control condition than both the conditions with a pre-roll ad before the video. This finding
highlights the role of ad avoidance in our study, as both conditions with an ad result in substantially lower
Video Consumption. Another interesting pattern that emerges from Figure A3b is the difference in the
rates at which the fraction of surviving users declines across different policies. This figure shows that
the No-Ad condition has the steepest negative slope, whereas the Skippable/Long ad condition has the
flattest negative slope. It is worth emphasizing that this is not a causal effect, and there is selection in the
type of users who are start the video across conditions.
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D.3 Heterogeneity in Treatment Effects Across Pre-Treatment Variables

In this section, we visualize the heterogeneous treatment effects across pre-treatment covariates. In par-
ticular, we focus on (1) Hour of Day, (2) City, and (3) Operating Systems, and quantify the treatment
effect conditional on different subcategories in these pre-treatment variables. Because we have an exper-
iment, we know that treatments are properly randomized at any given point in time. As a result, we can
use a simple mean difference estimator for the data from each subcategory. We only focus on our sample
in India as it constitutes 99.5% of all observations, and we modify the time zone from MST to IST for a
more meaningful interpretation. We focus on the top ten cities in terms of session count and drop Cros
from Operating Systems as there are only 36 observations belonging to users with Cros as the OS.

We present the results in Figure A4. Although we find heterogeneity in treatment effects across
subcategories, the substitution pattern persists across all subcategories. We now present some speculative
interpretations for the variation observed in Figure A4. The magnitude of treatment effects on both
outcomes is lower after 5:30 PM till 8:30 PM. This indicates that users’ consumption is overall less
sensitive to the ad format. One possible explanation for this pattern is that it is during the more focused
leisure time of the users. The extent of substitution is at its lowest during midnight hours and highest
during regular work hours, which is reasonable given the difference in time flexibility during midnight
relative to work hours. Focusing on the cities, we see some heterogeneity, with some cities having a lower
CATE on Video Consumption. By and large, we see a lower substitution level for less industrial cities,
which could be due to their time flexibility. Lastly, we see that the treatment effect on Ad Consumption
is higher for desktop users (Mac and Windows) compared to mobile users (Android and iPhone), which
is likely because mobile sessions are shorter and, therefore, more likely to be abandoned quickly.

E Details of Policies Defined in §5.2
In this section, we present a detailed and more formal version of the policies defined in §5.2.

• Scalarization with Causal Estimates (MO-SCE): We first define B = {(β, 1 − β) | β = i/500, 0 ≤
i ≤ 500} as the full set of weights. For any β ∈ B, we need to define the policy πMO-SCE

β . We use the
following equation to define this policy:

πMO-SCE
β (Xi) = 1

(
βτ̂Train

A (Xi) + (1− β)τ̂Train
V (Xi) ≥ 0

)
, (17)

where τ̂Train
A (Xi) and τ̂Train

V (Xi) are CATE estimates on Ad Consumption and Video Consumption
outcomes. We enumerate over all possible values of β ∈ B and form the set of policies ΠMO-SCE,
which contains 501 policies.

• Scalarization with Policy Learning (MO-SPL): We use the same B to choose the weights from. We
use D = {Xi,Wi, , e(Xi), τ̂

Train
A (Xi), τ̂

Train
V (Xi), Y

(A)
i , Y

(V )
i } for observations in the training data,

where e(Xi) is the propensity score for treatment assignment and Y
(A)
i and Y

(V )
i denote the Ad

Consumption and Video Consumption outcomes, respectively. For any specific β ∈ B, we can define
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Figure A4. Heterogeneity in Treatment Effects on Both Outcomes Across Pre-Treatment Variables
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(a) Outcome: Ad Consumption, Covariate: Time
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(b) Outcome: Video Consumption, Covariate: Time
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(c) Outcome: Ad Consumption, Covariate: City

−0.6

−0.4

−0.2

0.0

M
um

ba
i

D
el

hi

H
yd

er
ab

ad

C
he

nn
ai

Lu
ck

no
w

B
en

ga
lu

ru

K
ol

ka
ta

Ja
ip

ur

A
hm

ed
ab

ad

P
un

e

City

C
AT

E
 o

n 
V

id
eo

 C
on

su
m

pt
io

n

(d) Outcome: Video Consumption, Covariate: City
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(e) Outcome: Ad Consumption, Covariate: OS
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(f) Outcome: Ad Consumption, Covariate: OS

Note: Error bars are 95% confidence intervals around treatment effects. Ad Consumption is measured in 15-Second units
and Video Consumption is measured in Quarters. In the first row, Times are presented in Indian Standard Time (IST). In the
second row, we present top ten cities based on the session count, from left to right.
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Γ
(β)
i as follows:

Γ
(β)
i =

(
Wi

e(Xi)
− 1−Wi

1− e(Xi)

)(
βY

(A)
i + (1− β)Y

(V )
i

)
(18)

We then define L
(β)
i = sgn(Γ(β)

i ) as the label and |Γ(β)
i | as the observation weights. The next step

is to run a classification algorithm with L
(β)
i as the binary outcome, {Xi, τ̂

Train
A (Xi), τ̂

Train
V (Xi)} as

covariates, and |Γ(β)
i | as observation weights. We use XGBoost for this classification task, which

estimates the function f̂
(β)
XGB(·) that outputs a binary decision that takes value one if the policy suggests

treatment, and zero otherwise. We use a cross-validation procedure to estimate this function on the
training set and hold out the test set throughout the process. We can define policy πMO-SPL

β as follows:

πMO-SCE
β (Xi) = f̂

(β)
XGB

(
Xi, τ̂

Train
A (Xi), τ̂

Train
V (Xi)

)
(19)

It is worth noting that we use CATE estimates as they can only benefit the performance from a
practical perspective. In general, however, policy learning approaches can still learn policies only
with Xi as covariates. We repeat the process for any β ∈ B and obtain the set of policies ΠMO-SPL,
which contains 501 policies.

• Mixed Strategy Single Objective (SO-Mix): As a benchmark set of policies, we define a mixed
strategy between single-objective policies. As such, for any probability α ∈ [0, 1], we use the single-
objective personalized policy for Ad Consumption with probability α and the single-objective per-
sonalized policy for Video Consumption with probability 1− α. For any α, we define policy πSO-Mix

α

as follows:
πSO-Mix
α = 1(Zi ≤ α)πSO-AC(Xi) + 1(Zi > α)πSO-VC(Xi), (20)

where Zi is a random variable drawn from the uniform distribution: Zi ∼ U(0, 1). Intuitively, this
policy covers any point on the line from (ρA(π

SO-AC), ρV (π
SO-AC)) to (ρA(π

SO-VC), ρV (π
SO-VC)). This

serves as a great benchmark to see how much value adopting a multi-objective value can generate.
We use α ∈ {0, 1/500, 2/500, . . . , 1} to generate the set of mixed-strategy single objective policies
ΠSO-Mix, which contains 501 policies.

• Random Policy (Random): This set of policies is very similar to the Mixed Strategy Single Objective
(SO-Mix) policies with a notable difference: instead of mixing between single-objective personal-
ized policies, we mix between the uniform policies. For any α ∈ [0, 1], we use a mixed-strategy
policy that uses the treatment condition (Skippable/Long) with probability α and the control condi-
tion (Non-Skippable/Short) with probability 1− α. We denote the random policy with probability α

by πRandom
α and formally define it as follows:

πRandom
α = 1(Zi ≤ α)1 + 1(Zi > α)0, (21)

where 1 refers to the treatment assignment and 0 refers to the control assignment and Zi ∼ U(0, 1)
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as before. Again, we use α ∈ {0, 1/500, 2/500, . . . , 1} to generate the set of random policies ΠRandom

that contains 501 policies.

F Multi-Objective Personalization with Different Outcomes
Our main analysis focused on Ad Consumption as our ad-related metric. In the context of video ads,
there can be substantial heterogeneity in what part of sponsored content consumption is more desired for
both advertisers and platforms (Teixeira et al. 2014). An important feature of our framework is that we
can apply it to any well-defined outcome. For video advertising platforms, another outcome is often of
great interest: whether the user has reached the payment point. Platforms often set cutoff rules at 15 or 30
seconds to charge advertisers if the user reaches that point. One ad-related variable we can examine in our
empirical setting is Second 15 Complete. In this section, we perform the multi-objective personalization
framework when optimizing Second 15 Complete and Video Consumption. This approach reflects the
joint utility of many video advertising platforms that charge advertisers when the user reaches a certain
point within the ad. That is, if the user reaches a certain point in the ad, the advertiser has to pay even if
the user later skips the ad. The cutoff rule varies across platforms, ranging from 15 to 30 seconds. Thus,
a natural problem objective for platforms is to maximize the ad revenue by having more people reach the
cutoff point while keeping Video Consumption high.

In Table 2, we presented the average treatment effect on Second 15 Complete as the outcome vari-
able. We showed that users in the Skippable/Long ad condition are more likely to reach the 15th second
of the ad. However, the magnitude of the treatment effect is smaller compared to the effects on Ad Con-
sumption. In particular, we do not expect a natural substitution pattern between Second 15 Complete and
Video Consumption. Therefore, we expect that applying multi-objective personalization to this problem
creates more substantial value.

We first estimate the CATE on Second 15 Complete using Causal Forests, with a 10-fold cross-
validation. We plot the CATE on Video Consumption against CATE on Second 15 Complete for a
random sample of observations in our and present the results in Figure A5 to see the extent to which
the two outcomes are in conflict. Unlike the case with Ad Consumption and Video Consumption, we
note that the sign of the CATE estimates is the same for a large portion of observations. Over 41% of all
observations have the same signs of CATE estimates, which means that the treatment assignment for these
observations is clear: units with positive CATE estimates on both outcomes receive the Skippable/Long
ad, whereas units with negative CATE estimates on both outcomes receive Non-Skippable/Short ad.
Further, we find a positive correlation of 0.38 between CATE on Second 15 Complete and CATE on
Video Consumption. This confirms our initial intuition that multi-objective personalization would be
valuable in this setting.

We then apply both Scalarization with Causal Estimates (MO-SCE) and Scalarization with Policy
Learning (MO-SPL) algorithms to generate a set of policies under each algorithm. We consider the
same set of benchmark policies and references presented in §5.2: (1) Single-Objective for Second 15
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Figure A5. Scatter Plot of CATE Estimates for Video Consumption and Second 15 Complete
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Complete (SO-A15), (2) Single-Objective Video Consumption (SO-VC), (3) Mixed Strategy Single Ob-
jective (SO-Mix), (4) Random Policy (Random), (5) Data, and (6) Utopia.

We present the performance of all these policies using the IPS estimator when evaluated on the train-
ing and test data in Figure A6. A few insights immediately emerge from this figure. First, we note that
the MO-SCE is more stable and covers a broader range of policies. Second, we find that the performance
of MO-SCE is remarkably well on the training data as the Pareto frontier almost approaches the Utopia
point. We then turn to our Covered Area Proportion (CAP) measure proposed in §3.3 to evaluate the
performance of the identified sets of policies. We find that the set of MO-SCE policies achieve 75% and
58% in CAP measure on the training and test data, respectively. The performance is worse for the set of
MO-SPL policies because their coverage is more sparse: the set of MO-SPL policies achieve 51% and
43% in CAP measure on the training and test data, respectively.

Third, we find policies on the identified Pareto frontier with a reasonable performance relative to both
single-objective policies. In our case in the main text with Video Consumption and Ad Consumption as
outcomes, the extensive substitution between the two outcomes prevented us from finding a single policy
on the Pareto frontier that compares well with both single-objective policies. In the multi-objective
personalization problem with Second 15 Complete and Video Consumption as outcomes, we find policy
πMO-SCE
0.760 from the set of MO-SCE policies that achieve great performance when compared to either single-

objective policy. Compared to the Single-Objective Second 15 Complete (SOA15) policy, this multi-
objective personalized policy improves Video Consumption by 36.4%, while reducing the Second 15
Complete rate by 1.1% on the training data. On the test data, the gain in Video Consumption is 35.1%, at
the same loss of 1.2% of the Second 15 Complete rate. Interestingly, compared to the Single-Objective
Video Consumption policy (SO-VC), the very same policy πMO-SCE

0.760 increases the Second 15 Complete
rate by 6.1% relative to the SOVC policy, while reducing Video Consumption by 1.4%. On the test data,
the gain in the Second 15 Complete rate is 5.4%, and the drop in Video Consumption is 1.9%. Together,
our results show that the multi-objective personalization framework can be applied to a variety of settings
and generate gains beyond the single-objective personalization framework.
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Figure A6. Policy Evaluation on Training and Test Data for Video Consumption and Second 15 Complete
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