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Abstract. Marketing interventions usually affect multiple outcomes of interest. However, 
finding an intervention that improves all desired outcomes is often rare, creating a trade-off 
for managers and decision makers. In this paper, we develop a multiobjective personalization 
framework that identifies personalized policies to balance multiple objectives at the individ-
ual level. We apply our framework to a canonical example of multiobjective conflict between 
sponsored and organic content consumption outcomes. Partnering with vdo.ai, we conduct a 
field experiment and randomly assign users to the skippable/long and nonskippable/short 
versions of the same ad. We document substantial substitution between sponsored and 
organic content consumption; the version that increases sponsored consumption reduces 
organic consumption. We find that multiobjective personalized policies can significantly 
improve both sponsored and organic consumption outcomes over single-objective policies. 
We show that compared with a single-objective policy optimized for organic consumption, 
there exists a multiobjective policy that increases sponsored consumption by 61% at the 
expense of only a 4% decrease in organic consumption. Similarly, compared with the single- 
objective policy optimized for sponsored consumption, there is a multiobjective policy that 
increases organic consumption by 53% while decreasing sponsored consumption by just 15%.
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1. Introduction
Marketers increasingly rely on experimentation and 
A/B testing for decision making. Experimentation 
identifies the causal effect of each experimental condi-
tion relative to a control group, thereby allowing mar-
keters to choose the one with the maximum desired 
impact. However, most modern marketing problems 
involve optimizing multiple outcomes. For example, a 
digital publisher wants to have higher organic content 
consumption to increase user engagement as well as 
higher sponsored content consumption to achieve 
higher ad revenues. The main challenge is that these 
outcomes are often in conflict with each other. That is, 
actions that improve one desired outcome come at the 
expense of the other outcome(s), making it unclear 
what actions to implement. Therefore, the solution to 
this multiobjective conflict is essential to managers who 
want to find the right balance between objectives.

Personalization offers a potential solution to this 
problem. If we break down the heterogeneity in treat-
ment effects at the individual level, we may be able to 
reduce the multiobjective conflict. Figure 1 illustrates 
this point using a simple example, where the average 

treatment effects are in conflict; on average, the treat-
ment causes higher values in one outcome (e.g., organic 
consumption) but lower values in the other outcome 
(e.g., sponsored consumption). In an optimistic sce-
nario, the conflict disappears once we look at the treat-
ment effect heterogeneity at the individual level. The 
treatment effects have the same sign for each individ-
ual, so the decision making is trivial. However, in a 
pessimistic scenario, the conflict persists even at the 
individual level; the treatment assignment remains 
unclear for each individual, as shown in panel (b) of 
Figure 1.

In this paper, we study the problem of multiobjective 
personalization and examine the value it can create in 
settings with conflicting objectives. We view the prob-
lem through the lens of a platform and address the fol-
lowing sets of questions. The first set of questions is 
mainly theoretical. How can we design multiobjective 
personalization algorithms? What are the theoretical 
guarantees of these algorithms? How can we quantify 
the performance and the value created by multiobjec-
tive personalization algorithms? Next, we turn to a set 
of empirical questions. What are the gains from using a 
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multiobjective personalization algorithm in a setting 
with a high degree of substitution? What are the best 
algorithms in terms of performance? How can man-
agers use data to choose the right policy?

To answer these questions, we face several challenges. 
First, we need to characterize a specific target or goal for 
our personalization problem. Unlike the single-objective 
personalization problem where the expected outcome 
values are totally ordered, the main challenge in multi-
objective personalization is that policies are not directly 
comparable. This is because one policy can perform bet-
ter than another policy in one objective but worse in 
another objective. To address this challenge, we use the 
concept of Pareto optimality and set our goal as identify-
ing the Pareto frontier of the policy space in terms of 
multiple objectives, which is the set of policies that are 
not dominated by any other policy in all objectives. As 
such, the broad goal of multiobjective personalization is 
to eliminate all policies that are dominated by at least 
one feasible policy.

Our second challenge is one of identification: whether 
we can design multiobjective personalization algorithms 
that reliably identify the Pareto frontier of the policy 
space. We combine insights from the recent literature on 
causal machine learning with that of multiobjective 
optimization. In particular, we show that the feasible 
outcome space is convex, which implies that we can 
identify the complete Pareto frontier using the scalariza-
tion approach that maps multiple objectives into a single 
objective through linear weights. This allows us to 
design two multiobjective personalization algorithms: 
(1) scalarization with causal estimates (MO-SCE), which 
uses techniques from heterogeneous treatment effect 
estimation and proposes policies based on these causal 
estimates, and (2) scalarization with policy learning 
(MO-SPL), which directly learns the policy that opti-
mizes the weighted objective akin to the literature on 

policy learning (Swaminathan and Joachims 2015, Athey 
and Wager 2021). The output of these algorithms is a set 
of policies that are on the Pareto frontier of the policy 
space.

Third, to provide an empirical proof of concept for 
our multiobjective personalization algorithms, we need 
a setting with a high degree of substitution between 
outcomes, even at the individual level. Further, for 
both policy identification and evaluation, we need 
experimental variation in the treatment assignment. To 
satisfy these requirements, we partner with the video 
advertising platform vdo.ai and run a field experi-
ment to estimate the effects of ad format on both spon-
sored and organic content consumption, a canonical 
example in the marketing literature for two outcomes 
with a high degree of substitution (Wilbur 2008). In par-
ticular, we assign users to three experimental condi-
tions: (1) a skippable/long ad for a product, (2) a 
nonskippable/short ad for the same product, and (3) a 
no-ad condition where the user watches the video con-
tent without having to watch an ad. The two ad versions 
are 60- and 15-second cuts of the same raw footage used 
by an actual advertiser. We only show preroll ads that 
run before the organic video content and run the experi-
ment for four days on over 50,000 users. The experimen-
tal variation in assignment to each ad format allows us 
to apply our multiobjective personalization algorithms 
to identify Pareto optimal policies and perform counter-
factual policy evaluation for these policies in a 
confounding-robust manner.

We first estimate the average treatment effect of 
the skippable/long ad version in our study on spon-
sored and organic consumption metrics relative to the 
nonskippable/short ad. We measure sponsored con-
sumption as the amount of ad content watched by the 
user and organic consumption as the amount of video 
watched by the user. We find that exposure to the 

Figure 1. (Color online) Overview of Multiobjective Personalization 

(a) (b)

Notes. Arrows show the treatment effects, and colors show the signs: green for positive and red for negative. Each individual is shown with an 
icon. In the aggregate case, they are grouped together. ATE, average treatment effect. (a) Optimistic scenario. (b) Pessimistic scenario.
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skippable/long ad results in 13.5 seconds more spon-
sored consumption on average compared with the 
nonskippable/short ad. Next, we focus on organic 
consumption as the outcome and show that assign-
ment to the skippable/long ad version results in 9.5- 
percentage-point-lower organic consumption than the 
nonskippable/short ad. We then test for the substitu-
tion between sponsored and organic consumption. 
We cannot regress organic consumption on sponsored 
consumption simply because sponsored consumption 
is endogenous. However, because our treatment exog-
enously shifts sponsored consumption, we can use 
an instrumental variable research design. When we 
instrument sponsored consumption with the treat-
ment assignment, we find a clear substitution pattern, 
where every 15-second increase in sponsored con-
sumption results in approximately 13 seconds less 
organic video consumption on average.

Next, we explore heterogeneity in treatment effects 
across observed covariates. We use causal forests to esti-
mate the heterogeneity in treatment effects (Wager and 
Athey 2018). We show substantial variation in the 
distribution of the conditional average treatment effect 
(CATE) on both sponsored and organic consumption. 
However, the distribution of CATE estimates for each 
outcome is largely unidirectional; all CATE estimates for 
sponsored consumption are positive, whereas nearly 
97% of CATE estimates for organic consumption are 
negative. This implies that only for 3.2% of all units, one 
treatment achieves higher sponsored and organic con-
sumption. Thus, even at the individual level, the plat-
form faces a challenge in finding the right policy that 
increases both sponsored and organic consumption.

Our multiobjective personalization framework aims 
to address the substitution between sponsored and 
organic consumption. Intuitively, multiobjective algo-
rithms identify units whose positive contribution to spon-
sored consumption outweighs their negative impact 
on organic consumption and assign these units to the 
skippable/long ad version. We use our multiobjective 
personalization algorithms and identify a set of policies 
in each case. To evaluate the performance of these poli-
cies, we need a model-free approach as model-based 
approaches can favor some algorithms more than others. 
We turn to the inverse propensity scoring (IPS) estimator 
proposed by Horvitz and Thompson (1952) that pro-
vides an unbiased estimate of the expected outcome 
under each policy and does not require model-based 
estimates of the outcomes. To examine how well these 
algorithms perform, we compare their performance with 
a group of single-objective personalized policies for each 
outcome and any random mixing of the two single- 
objective personalized policies. The gap between our 
identified Pareto frontier using the multiobjective per-
sonalization algorithms and this set of benchmarks 
quantifies the value that multiobjective personalization 

can create relative to a single-objective personalization 
algorithm.

Our results reveal a large gap between the Pareto 
front generated by our algorithms and the set of person-
alized policies that only use a single objective, indicating 
that multiobjective personalization creates substantial 
value in this context. We document that compared with 
the single-objective personalized policy that only opti-
mizes sponsored consumption, there is a multiobjective 
personalized policy that increases organic consumption 
by 53% while only decreasing the sponsored consump-
tion outcome by 15%. We further find larger gains when 
the platform wants to keep organic consumption high. 
We show that compared with a single-objective person-
alized policy that only optimizes organic consumption, 
there is a policy on the identified Pareto frontier that 
improves sponsored consumption by 61% while only 
reducing organic consumption by 4%. Together, these 
findings show that multiobjective personalization can 
create value by substantially improving the performance 
in one dimension (e.g., organic consumption) without 
sacrificing the performance in the other dimension (e.g., 
sponsored consumption).

In sum, our paper offers several contributions to the 
literature. From a methodological standpoint, we bring 
insights from multiobjective optimization to the litera-
ture on the intersection of machine learning and causal 
inference, and we propose a framework for multiobjec-
tive personalization. We prove that scalarization identi-
fies the complete Pareto frontier in the outcome space. 
In particular, we propose two scalarization-based algo-
rithms based on the heterogeneous treatment effect 
estimation and the policy learning that can identify the 
Pareto frontier of policies in terms of multiple objec-
tives. From a managerial perspective, our multiobjec-
tive personalization framework can be applied to a 
wide variety of settings where there is a conflict in 
treatment effects on multiple outcomes that managers 
care about. Our framework provides flexibility for 
managers and decision makers who want to achieve a 
certain balance between outcomes by allowing them to 
evaluate the Pareto frontier a posteriori and select the 
policy. Substantively, we identify a new area where 
personalization can create value. The prior literature 
on personalization has often focused on the richness 
of covariates to demonstrate the value of personaliza-
tion where we can differentiate between users. This 
work uses the variation in multiple outcomes to 
develop better personalized policies. In particular, 
we show substantial gains in one outcome without 
sacrificing another in a domain with a high degree of 
substitution. More specifically, our work contributes 
to the literature on the interplay between sponsored 
and organic consumption. We highlight an important 
trade-off in the effect of ad format on these outcomes 
and show that advertising platforms can incorporate a 
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multiobjective approach when designing their ad allo-
cation policies.

2. Related Literature
First, our paper relates to the literature on personaliza-
tion. User tracking and algorithmic decision making 
allow digital platforms to easily implement personal-
ized policies at scale (Lambrecht and Tucker 2019). 
Recent methodological developments in this literature 
have brought a causal lens to machine learning algo-
rithms that have been traditionally used for personali-
zation tasks (Swaminathan and Joachims 2015, Shalit 
et al. 2017, Wager and Athey 2018, Athey and Wager 
2021, Nie and Wager 2021). Applied papers in this 
domain have documented the gains from personaliza-
tion in a variety of domains, such as marketing mix per-
sonalization for optimal admission and scholarship 
outcomes (Belloni et al. 2012), incentives in churn man-
agement problems (Ascarza 2018), promotional offers 
in retail settings (Simester et al. 2020a, b), allocation and 
sequencing of mobile in-app advertising (Rafieian and 
Yoganarasimhan 2021, Rafieian 2023), length of free 
trial in the software-as-a-service industry (Yoganara-
simhan et al. 2023), and product versioning in music 
streaming platforms (Goli et al. 2024). The key insight 
in this series of work is that having a fine-grained set 
of pretreatment variables helps differentiate between 
users, thereby creating value by assigning users to the 
right policy. We extend this literature by proposing a 
multiobjective personalization framework that allows 
firms to identify Pareto optimal policies that generate 
considerable gains in many dimensions. In particular, 
we show that even in a context where single-objective 
personalized policies offer limited differentiation, a 
multiobjective personalization approach can create 
substantial value by differentiating between users 
based on the magnitudes of treatment effects and sub-
stitutability between outcomes at the individual level. 
Our generic and flexible framework makes it applica-
ble to many marketing and nonmarketing problems 
where the manager needs to optimize more than one 
objective.

Second, our paper relates to the literature on multi-
objective optimization (Marler and Arora 2004). This 
literature has proposed a series of algorithms to deal 
with multiobjective optimization problems, ranging 
from scalarization techniques (Miettinen and Mäkelä 
2002) to genetic algorithms (Deb et al. 2002). More 
closely related to our paper is the stream of literature 
that considers discrete policies that map the covariate 
vector to a specific treatment condition, such as the 
literature on multiobjective contextual bandits (Tekin 
and Turğay 2018; Turgay et al. 2018; Wang et al. 2022, 
2024) and the literature on multiobjective reinforce-
ment learning (Roijers et al. 2013, Van Moffaert and 

Nowé 2014, Abdolmaleki et al. 2020). Our paper builds 
on the foundations laid out in the multiobjective opti-
mization literature and contributes to this stream of 
work in two ways. First, we bring a causal lens to the 
problem and directly incorporate the conditional aver-
age treatment effect estimates to the problem. Second, 
we theoretically show that the scalarization method 
can fully recover the Pareto frontier in this class of pro-
blems as the expected outcome space under feasible 
policies is convex.

Our paper also relates to the literature on the inter-
play between sponsored and organic content (Sun and 
Zhu 2013). With advancements in ad measurements, 
the literature on TV advertising has documented a phe-
nomenon called “zapping,” which is the practice of 
switching channels during commercial breaks (Zufry-
den et al. 1993, Danaher 1995, Siddarth and Chattopad-
hyay 1998). Since then, several papers have examined 
different aspects of ad avoidance by deriving the equi-
librium properties in markets where users are averse to 
ads (Anderson and Coate 2005, Dukes et al. 2022), by 
quantifying the audience loss caused by ad avoidance 
(Wilbur 2008, Schweidel and Moe 2016, Rajaram et al. 
2023), by predicting ad avoidance based on the past 
consumption of the product (Tuchman et al. 2018), by 
linking ad avoidance to sales (Bronnenberg et al. 2010, 
Deng and Mela 2018), and by proposing market design 
solutions to account for audience externalities (Wilbur 
et al. 2013).1 We contribute to this stream of work by 
causally identifying a substitution pattern between 
sponsored and organic content consumption. Impor-
tantly, we show how platforms can use personalization 
to efficiently exploit this substitution pattern and achieve 
desired outcomes in both ad consumption (sponsored) 
and video consumption (organic).2

3. Multiobjective Personalization
In this section, we present our framework for multiob-
jective personalization. We first formally present some 
preliminaries from the literature on causal inference 
and multiobjective optimization, and we clearly define 
our problem in Section 3.1. We then present our theo-
retical results on the multiobjective personalization 
problem and develop two algorithms that help identify 
multiobjective policies in Section 3.2. Finally, in Section 
3.3, we present an intuitive measure of performance for 
the set of policies generated that quantifies the value 
from multiobjective personalization and helps with 
model selection.

3.1. Problem Definition
At a high level, multiobjective personalization entails 
developing a personalized policy that performs well in 
terms of multiple objectives. To characterize this prob-
lem, we need to first define what we mean by a 
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personalized policy and performance. Let X and W denote 
the covariates and treatment status, respectively. To 
further formalize the problem, we let X and W denote 
the support for covariates and treatment. For example, 
we have W � {0, 1} in a binary treatment context. For 
notational simplicity, we follow the common norm in 
the literature and study the case for the binary treat-
ment, which is also consistent with our empirical appli-
cation. However, it is easy to extend our algorithms 
to multiple treatment settings. In a multiobjective per-
sonalization problem, we have K different outcomes 
denoted by {(Y(1), Y(2), : : : , Y(K))}. For each outcome Y( j), 
we define the set of potential outcomes as {Y( j)(w)}w∈W . 
With these model preliminaries defined, we can charac-
terize the key concepts in our problem. We start with 
the definition of a policy π�as follows.

Definition 1. A policy π : X → [0, 1] is a mapping 
from the covariate space to probability values that 
determines the probability of treatment assignment 
for any observation based on its vector of characteris-
tics Xi.

Naturally, the definition above implies that the 
probability of assignment to control is 1�π(Xi). For 
deterministic policies, π(·) only takes values in {0, 1}. 
Finding a personalized policy is a search over infi-
nitely many options. To perform this search effec-
tively, we need a performance measure tied to our 
multiple outcomes. For example, in our empirical con-
text, we want to know how each policy performs in 
terms of sponsored and organic consumption. We 
define these performance measures as follows.

Definition 2. For each outcome Y( j), we define the per-
formance of the policy in terms of that outcome as a 
mapping ρj :Π→ R, where Π�is the space of all possi-
ble policies. This indicates that for a policy π, the per-
formance in terms of outcome Y( j) is characterized by 
ρj(π). We can formally define this term as follows:

ρj(π) � E[π(Xi)Y
( j)
i (1) + 1�π(Xi)( )Y( j)i (0)], (1) 

where the expectation is taken over the joint distribu-
tion of the covariates. Intuitively, ρj(π) is the expected 
value of the outcome Y( j) if we implement policy π.

In a multiobjective personalization problem, we 
need to consider performance metrics for all outcomes 
of interest. As a result, comparing two policies is more 
challenging in a multiobjective case compared with a 
single-objective case, where there is one objective with 
a clear order. For example, in the context of our prob-
lem, we can consider two objectives ρs(π) and ρo(π)
that are defined for the sponsored consumption and 
organic consumption outcomes, respectively. If there 
are two policies π1 and π2 such that ρs(π1) > ρs(π2)

and ρo(π1) < ρo(π2), it is not clear which one the plat-
form must choose. However, if there are two policies 

π1 and π2, such that ρs(π1) > ρs(π2) and ρo(π1) >

ρo(π2), we can conclude that policy π2 is dominated 
by π1 with respect to both objectives. This type of 
comparison immediately brings us to the notion of 
Pareto optimality, where the Pareto frontier of the pol-
icy space is the set of policies that are nondominated 
by any other policies. To this end, we define the main 
goal of multiobjective personalization as follows.

Definition 3. Suppose that there is a manager who 
wants to optimize multiple outcomes Y(1), Y(2), … , 
Y(K). Our goal is to find a set of policies Πf that are 
Pareto optimal in terms of objectives ρ1(π), ρ2(π), … , 
ρK(π). That is, for each π ∈Πf , there is no other policy 
π′ in the space of policies such that we have ρj(π

′) >

ρj(π) for every j.
Intuitively, our goal is to eliminate dominated poli-

cies and present the manager with a set of Pareto opti-
mal policies Πf. In the next section, we discuss how 
we can design algorithms to identify these Pareto 
optimal policies.

3.2. Algorithms for Multiobjective Personalization
Fundamentally, the problem in Definition 3 can be 
viewed as a multiobjective optimization problem. The 
literature on multiobjective optimization offers many 
solutions to this problem given the setting. Much of 
this literature focuses on the problem with a set of con-
tinuous control variables set by the decision maker that 
is linked to multiple notions of reward or objective 
(Marler and Arora 2004). For example, a driver can set 
the continuous variables speed and total passenger 
weight to optimize the travel time and fuel cost. The 
multiobjective personalization problem involves find-
ing a complex individual-specific policy that performs 
well on multiple objectives. As such, our problem is 
more closely related to the literature on multiobjective 
contextual bandits (Drugan and Nowe 2013; Tekin and 
Turğay 2018; Turgay et al. 2018; Wang et al. 2022, 2024) 
and multiobjective reinforcement learning (Roijers et al. 
2013, Van Moffaert and Nowé 2014, Abdolmaleki et al. 
2020). Most of these papers focus on regret bounds in 
an online setting with exploration or use a very specific 
type of multiobjective optimization problem. Our work 
considers a general personalization problem in an off-
line setting and proposes algorithms that can provably 
identify the complete Pareto frontier with statistical 
guarantees. A novel aspect of our work is in bringing 
a causal lens to this problem, which allows us to pro-
pose solutions that are generalizable and robust to 
confounding.

One of the most popular solutions to the multi-
objective optimization problem is linear scalarization, 
whereby we map multiple objectives into a single 
objective using linear weights that come from the prob-
ability simplex. That is, for any set of nonnegative 
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weights β ∈ RK
+ such that 

PK
j�1 βj � 1, we maximize 

PK
j�1 βjρj(π). It is easy to show that for any given set of 

weights, the optimal solution 
PK

j�1 βjρj(π) is Pareto 
optimal.3 However, there is no guarantee that we can 
identify the full Pareto frontier by enumerating all pos-
sible weights. Figure 2 helps illustrate this point in a 
setting with two objectives. Geometrically, linear sca-
larization finds the optimal solution by shifting the 
lines in the direction illustrated. As such, it can only 
identify Pareto optimal solutions that are on the convex 
hull of the outcome space (e.g., point A in Figure 2), but 
it fails to identify Pareto optimal solutions that are not 
on the convex hull of the outcome space (e.g., point B in 
Figure 2). Thus, in the general case, linear scalarization 
methods cannot identify the complete Pareto frontier.

Our multiobjective personalization problem differs 
from the general class of multiobjective problems as we 
can formally prove that the outcome space {(ρ1(π), : : : , 

ρK(π))}π∈Π�is convex. The intuition for this result is as 
follows; for any two points in the outcome space, we 
can find the set of policies that cover the line between 
these two points using a mixed strategy policy that 
probabilistically uses these two policies. Thus, we can 
write the following proposition.

Proposition 1. Let B � {β |β ∈ RK
+,
PK

j�1 βj � 1} denote the 
full set of linear weights. For any β ∈ B, we define πS

β �

arg max
PK

j�1 βjρj(π), which is the solution to the single- 
objective problem with weights β. The full set of policies 
identified by linear scalarization, defined as ΠS � {πS

β}β∈B, 
is the complete Pareto frontier of the outcome space (i.e., 
ΠS �Πf ).

Proof. See Online Appendix A.1 for the proof. w

This proposition theoretically shows that we can use 
linear scalarization to identify the complete Pareto fron-
tier if we know the function ρj(·) for any k. The empiri-
cal challenge is that we do not know ρj(·) and that we 
need to estimate it from the data. For any set of weights 

β ∈ B, we can write the scalarized optimization problem 
as follows:

πS
β � arg max

XK

k�1
βkρk(π): (2) 

In the following sections, we propose two algorithms 
that take data as the input and use linear scalarization 
to empirically identify the Pareto frontier. Before we 
proceed with our empirical algorithms, we make a key 
assumption.

Assumption 1. The following four conditions hold for data 
set D � {(Xi, Wi, Y(1)i , : : : , Y(K)i )}

N
i�1: (1) the stable unit treat-

ment value assumption (SUTVA), which states that poten-
tial outcomes for one unit are not influenced by other units’ 
treatment assignment and that there is only one version 
for each treatment; (2) the unconfoundedness assumption, 
which states that the treatment assignment is independent 
of potential outcomes given observed covariates; (3) overlap, 
which states that the treatment assignment is probabilistic; 
and (4) the no distribution shift assumption, which indi-
cates that the joint distribution of covariates and potential 
outcomes is fixed.

The four conditions in the assumption above are all 
standard causal inference assumptions that are largely 
used in the personalization literature (Rafieian and 
Yoganarasimhan 2023). As we will discuss later, these 
assumptions allow us to empirically identify the Pareto 
frontier using our algorithms. It is worth emphasizing 
that because we do not know the function ρj(·), our task 
at hand is one of statistical estimation, which naturally 
involves some uncertainty and error. As such, Pareto 
frontiers identified under different algorithms can dif-
fer because of the randomness in the data. Súkenı́k and 
Lampert (2022) show that one could build generalization 
error bounds and excess bounds for scalarized objec-
tives, like in Equation (2), in order to bound the differ-
ence between the empirically Pareto optimal set of 
policies obtained by algorithms and the truly Pareto 
optimal set of policies. Therefore, the statistical guaran-
tees that our algorithms have for the single-objective 
case will conveniently transfer to the multiobjective case.

3.2.1. Scalarization with Causal Estimates. In this sec-
tion, we present our first algorithm to empirically iden-
tify the Pareto frontier, which uses causal estimates to 
simplify the optimization in Equation (2). We first 
define our key causal estimand as follows.

Definition 4. For any outcome Y( j), the conditional 
average treatment effect is denoted by τk(·) and defined 
as follows:

τk(x) � E[Y
( j)
i (1)�Y( j)i (0) |Xi � x]: (3) 

Intuitively, the CATE estimate measures the treatment 
effect conditional on a certain value of the covariates. 

Figure 2. (Color online) Identification of Pareto Optimal 
Points Using Linear Scalarization 
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The prior literature in the intersection of causal infer-
ence and machine learning offers a host of methods 
that estimate CATE under the set of assumptions pre-
sented in Assumption 1 (Shalit et al. 2017, Wager and 
Athey 2018). These estimators have desirable statistical 
properties, such as consistency and unbiasedness. 
Using the potential outcomes framework and the CATE 
definition, we can write the following proposition about 
the optimal personalized policy given any β.

Proposition 2. For any β ∈ B, the optimal solution to the 
objective function in Equation (2) is as follows:

πβ(x) � 1
XK

j�1
βjτj(x) ≥ 0

0

@

1

A, (4) 

where τj(·) is the CATE on outcome Y( j).

Proof. See Online Appendix A.2. w

The intuition behind Proposition 2 is the following; 
the only policy-variant element of ρj is τj. Hence, we 
can simplify the policy optimization in Equation (2) 
and write it in terms of CATEs. This also simplifies the 
empirical task at hand as we only need to estimate 
CATEs. Figure 3 illustrates how Proposition 2 works by 
using a simple example with two objectives, where the 
line for a given β�determines which observations should 
receive the treatment or control. For other weights, the 
line shown will rotate in a certain direction and identify 
different policies. Our scalarization with causal esti-
mates algorithm (Algorithm 1) precisely does that; it 
forms the union of all policies generated by different 
values of β ∈ B.

We present our algorithm for scalarization with 
causal estimates in Algorithm 1. The algorithm takes 
CATE estimates as inputs and generates different poli-
cies corresponding to each element of the set B. As 
shown in this algorithm, for any set of weights β ∈ B, 
we use CATE estimates to obtain a personalized policy. 
The output is a set of policies that is the identified 
Pareto frontier using this algorithm. In Online Appen-
dix B.1, we present a very simple illustrative example 
with three data points.

Algorithm 1 (Scalarization with Causal Estimates)
Input: {(τ̂1(Xi), τ̂2(Xi), : : : , τ̂K(Xi))}

N
i�1, B

Output: ΠMO-SCE 

1: for ∀(β1,β2, : : : ,βK) ∈ B do
2: πSCE

β (x) ← 1(
PK

j�1 βjτ̂j(x) ≥ 0)
3: end for
4: ΠMO-SCE←∪β∈BπMO-SCE

β (x)

The overall logic of Algorithm 1 is to first estimate 
CATEs and then feed these estimates to the algorithm 
as inputs to solve for Equation (4). Because the main 
uncertain piece in Equation (4) is the set of CATE esti-
mates, the statistical properties of the algorithm depend 
on the statistical properties of the CATE estimator. Under 
Assumption 1, we know that a host of methods can pro-
duce consistent and unbiased estimates of CATE, which 
offer statistical guarantees for Algorithm 1. More specifi-
cally, the scalarization with causal estimates algorithm 
(Algorithm 1) performs well when the CATE estimates 
are more accurate.

3.2.2. Scalarization with Policy Learning. An alterna-
tive empirical approach to identify policies that 

Figure 3. (Color online) An Illustration of the Assignment Policy in Scalarization with Causal Estimates 
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Notes. Each point shows the CATE on outcomes 1 and 2 for a data point. The figure illustrates the scalarization with the causal estimates policy 
for β � (0:25, 0:75); so, points above the line 0:25τ1 + 0:75τ2 are assigned to treatment (red plus signs), and points below that line are assigned to 
the control condition (blue circles).

Rafieian, Kapoor, and Sharma: Multiobjective Personalization of Marketing 
Marketing Science, 2025, vol. 44, no. 2, pp. 457–477, © 2024 INFORMS 463 



optimize the objective function in Equation (2) is to 
use direct policy learning (Swaminathan and Joachims 
2015, Athey and Wager 2021). In a single-objective 
setting where we only want to optimize ρj(·), this 
approach uses an unbiased estimate of ρj(·) to form 
an objective function. It then identifies the policy π�from 
a certain policy class Π∗ that optimizes the objective func-
tion. In this section, we want to define this approach for 
the multiobjective setting as in Equation (2). To do so, we 
define an estimator for ρj(·) as follows.

Definition 5. Let e(Xi) denote the propensity score for 
treatment. For any data D with N observations, the 
inverse propensity scoring estimator for outcome Y( j)
under policy π�is defined as follows:

ρ̂IPS
j (π;D) �

1
N
X

i∈D

π(Xi)Wi

e(Xi)
+
(1�π(Xi))(1�Wi)

1� e(Xi)

� �

Y( j)i :

(5) 

The IPS estimator was first proposed by Horvitz and 
Thompson (1952) and then used widely for counterfac-
tual policy evaluation in the personalization literature 
(Rafieian and Yoganarasimhan 2023). Importantly, the 
IPS estimator ρ̂IPS

k (·) is an unbiased estimator for ρj(·). 
As such, we can define the empirical equivalent of 
Equation (2) by plugging in ρ̂IPS

j (·) for every ρj(·). In the 
following proposition, we show what optimizing this 
empirical target is equivalent to.

Proposition 3. Suppose we have data D � {(Xi, Wi, e(Xi), 
Y(1)i , : : : , Y(K)i )}i. The variable Γi is defined at the individual 

level as follows:

Γi �
Wi

e(Xi)
�

1�Wi

1� e(Xi)

� �
XK

j�1
βjY
( j)
i

0

@

1

A: (6) 

For a given deterministic policy class Π∗, the solution to the 
arg maxπ∈Π

PK
j�1 βjρ̂

IPS
j (π) will be the solution to a weighted 

classification problem with Li � sgn(Γi) as the label and |Γi |

as weights.

Proof. See Online Appendix A.3. w

This proposition indicates that for any β ∈ B, we can 
directly learn policy πS

β�in Equation (2) using any off- 
the-shelf classification algorithm. The intuition behind 
this is the following; a more positive Γi indicates greater 
gains when assigned to the treatment, whereas a more 
negative one indicates greater gains when assigned to 
the control condition. A weighted classification tries to 
learn the best assignments. It is worth emphasizing that 
the reason we estimate a policy function based on 
inputs Xi is that we do not know Γi prior to the treat-
ment assignment.

Figure 4 shows an example of treatment assignment 
under the policy learning approach. Unlike Figure 3, 
the policy is not linear in CATE estimates but follows 
the same logic; points with higher CATEs on both 
dimensions are more likely to receive the treatment.4

We present the algorithm for multiobjective person-
alization that uses the policy learning approach in 
Algorithm 2. Like Algorithm 1, we obtain an estimate 
of policy πS

β�for any β ∈ B. The resulting output is a set 
of size |B | , which is the empirically identified Pareto 
frontier using the policy learning algorithm. We 

Figure 4. (Color online) An Illustration of the Assignment Policy in Scalarization with Policy Learning 
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Notes. Each point shows the CATE on outcomes 1 and 2 for a data point. The figure illustrates the scalarization with the policy learning policy 
for β � (0:25, 0:75). The treatment (red plus signs) and control (blue circles) assignments are determined based on the weighted classification 
task.
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present a very simple illustrative example with three 
data points in Online Appendix B.2.

Algorithm 2 (Scalarization with Policy Learning)
Input: {Xi, Wi, e(Xi), Y(1)i , : : : , Y(K)i }i, B

Output: ΠMO-SPL 

1: for ∀(β1,β2, : : : ,βK) ∈ B do

2: Γi←
Wi

e(Xi)
� 1�Wi

1�e(Xi)

� � PK
j�1 βjY

( j)
i

� �

3: πSPL
β ← arg maxπ∈Π(2π(x)� 1)Γi 

. Classification: sign(Γi) as labels and 
|Γi | as weights

4: end for
5: ΠMO-SPL←∪β∈BπMO-SPL

β (x)

Like our scalarization with causal estimates algorithm 
(Algorithm 1), we require the standard assumptions of 
causal inference presented in Assumption 1 for identifica-
tion. However, one key advantage of this approach is 
that even without theoretical guarantees on the 1=

ffiffiffiffi
N
√

- 
rate estimation of CATEs, we can identify the optimal 
policy at a 1=

ffiffiffiffi
N
√

-rate regret over the policy class Π�if we 
know the propensity scores and the Vapnik–Chervonenkis 
(VC) dimension of Π�is finite (Athey and Wager 2021). 
Another advantage of this algorithm is that we can 
directly give CATE estimates as inputs in addition to the 
data D, facilitating the policy learning process. On the 
other hand, the main drawback of this approach is for 
cases where propensity scores are small, which creates a 
large variance in the Γ�weights. In order to overcome this 
challenge, the natural solution in the literature is to use a 
doubly robust scoring as in Athey and Wager (2021).

3.3. Evaluation of the Set of Policies
Suppose we have two algorithms A and B that identify 
policies πA and πB in a single-objective personalization 
problem. If we have an evaluator ρ̂(·), we can compare 
the performance of πA and πB and see which one per-
forms better. In a multiobjective personalization set-
ting, however, algorithms A and B identify a set of 
policies ΠA and ΠB, respectively. As such, the compari-
son is not trivial as we are dealing with sets of policies. 
In this section, we use the theoretical structure of our 
problem and propose a simple measure that allows us 
to compare the performance of two sets.

We use a two-dimensional example in Figure 5 to illus-
trate our proposed measure. Each point in Figure 5 corre-
sponds to the expected outcomes under a policy. We see 
the expected outcomes under two single-objective per-
sonalized policies, SO1 and SO2. Given that the outcome 
space is convex, we know that the weakest identified 
Pareto frontier would be the line between these two 
single-objective policies as one could achieve any point 
on this line by using a mixed strategy policy that uses 
either single-objective personalized policy with a certain 
probability. The line between the two single-objective 

personalized policies thus serves as a reasonable bench-
mark for multiobjective personalization. On the other 
hand, the best-case scenario for multiobjective personali-
zation is to achieve a utopia point as shown in Figure 5, 
which takes the optimal expected outcome in each 
dimension. The Pareto frontier will naturally be the curve 
within the triangle between single-objective policies and 
the utopia point.

Intuitively, the farther the Pareto frontier gets from the 
single-objective line and the closer it gets to the utopia, 
the greater the value created by multiobjective personali-
zation. Therefore, the area between the Pareto frontier 
and the line between single-objective personalized poli-
cies indicates the performance of the set of Pareto optimal 
policies. To normalize this measure, we use the propor-
tion of this area to the total area of the triangle as our 
main measure and call it the covered area proportion (CAP). 
We can easily extend this notion to multidimensional set-
tings and evaluate the set of Pareto optimal policies.

An important benefit of using the CAP measure is in 
model selection. As discussed earlier, the MO-SCE per-
forms well when we can accurately estimate the CATEs 
from data. On the other hand, the MO-SPL algorithm 
does not require accurate CATE estimates, but it requires 
accurate and not too small propensity weights. In many 
cases, it is not easy to verify these conditions ex ante. 
Therefore, researchers can use the CAP measure to 
choose the best-performing algorithm for empirical iden-
tification of the Pareto frontier.

4. Empirical Application
In our empirical application, our primary goal is to 
provide a proof of concept for our multiobjective 

Figure 5. (Color online) A Visual Illustration of Multiobjec-
tive Policy Evaluation 
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Notes. SO1 and SO2 refer to the single-objective personalized policies 
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personalization algorithms. As such, we need a setting 
where there is a high degree of conflict between the 
treatment effects on multiple outcomes of interest. Fur-
ther, we need to have an experiment so that we can reli-
ably measure the performance of policies proposed by 
our algorithms. To meet these criteria, we collaborate 
with the video advertising platform vdo.ai and con-
duct a field experiment to measure the impact of ad 
format on both sponsored and organic content con-
sumption, outcomes that exhibit a high degree of sub-
stitution (Wilbur 2008).

Before we proceed with the details of our empirical 
application, we stress that the main purpose of our 
empirical application is to provide the right setting 
to test our multiobjective personalization framework 
and acknowledge that obtaining generalizable insights 
from our experiment is challenging given the heteroge-
neity in the effects of interest and the specificity of our 
empirical context.

4.1. Experiment
The application setting of our study is the video adver-
tising industry. We partner with the company vdo.ai, 
which is based in India and the United States and pro-
vides video services to publishers worldwide. Since 
its launch, vdo.ai has attracted many large- and 
medium-sized media publishers that use the com-
pany’s technology to serve organic and sponsored 
video content on their web pages. As a form of moneti-
zation, vdo.ai places video ads at different parts of an 
organic video. The sponsored content in our study is in 
the form of video ads. The video ads are generally of 
three types: (1) preroll ads that are placed prior to the 
start of the video, (2) midroll ads that are placed in the 
middle of the video, and (3) postroll ads that are placed 
after the content video has finished playing. Figure 6
visualizes these different types of ads. In our experi-
ment, we only focus on the preroll ads that are shown 
before the organic content starts.

Unlike video streaming platforms, such as YouTube, 
the organic video content in our context is not generally 
the primary reason that a user is visiting a web page. 
For example, the organic video content may be placed 
in a news article that a user wants to read. This is a com-
mon practice among media publishers, such as cnn. 
com or espn.com, that display organic and sponsored 
content within the news article. As the main facilitator 
of sponsored and organic video content, vdo.ai wants 

higher sponsored consumption as it is directly linked 
to ad revenues5 as well as higher organic consumption 
as it relates to user engagement and attracts more con-
tent creators, which help the platform generate more 
advertising opportunities in the short run and the long 
run.

The platform uses two different inventories of ad 
impressions to allocate video ads. In the first inventory, 
a second-price auction determines which ad will be 
placed in an impression. That is, advertisers participate 
in an auction, and the impression will be awarded to 
the ad with the highest bid or willingness to pay. The 
second inventory is an unsold impression inventory 
used for experimentation.6 We use this second inven-
tory of impressions for our experiment, which ensures 
that ads shown in our experiment are not determined 
through any algorithmic or human-directed targeting 
process.

We design a fully randomized experiment at vdo.ai, 
where the preroll impressions are assigned to three 
experimental conditions: (1) the no-ad condition, where 
the user does not need to watch an ad to start consuming 
the organic video content; (2) the nonskippable/short ad 
condition, where the ad shown is a 15-second-long ad 
of boAt’s Watch Xtend product that is not skippable; 
and (3) the skippable/long ad condition, where the ad 
shown is a 60-second-long ad of the same boAt product 
that is skippable after 5 seconds. We split the impres-
sions randomly across treatment conditions with differ-
ent weights such that the no-ad condition is used for 
10% of all impressions and that either one of the ad con-
ditions is shown in 45% of impressions each. For the 
nonskippable/short and skippable/long ad conditions, 
we use two versions of an advertisement for the same 
boAt product. The two ads are short and long cuts of the 
same raw footage launched by an actual advertiser. In 
Online Appendix C, we present more details about the 
advertised product and brand, and we show a snapshot 
from each ad format. It is worth emphasizing that 
although the set of ads is selected from the actual ad 
inventory, it is not a representative set. As such, our 
analysis cannot offer generalizable substantive insights 
about the effect of skippability and the length of video 
ads. Instead, we adopt the perspective of a platform that 
wants to choose between the two ad formats given its 
impact on the downstream outcomes, such as sponsored 
and organic consumption.

Figure 7 summarizes a schema of our experiment 
and the treatment conditions. The points in Figure 7
show the pixels placed to find whether the user has 
reached a certain point in the ad and video. This means 
that we can record whether the user has reached the 
midpoint of the skippable/long ad (i.e., second 30) or 
the third quarter (Q) of the organic video (75%). 
Although we can control for the exact ad shown, the 
organic video content is chosen by the users, so the 

Figure 6. (Color online) Different Types of Video Ads 
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video content can be different videos with different 
lengths. However, given the randomization in our 
experiment, the organic video does not affect the treat-
ment condition. Thus, the distribution of videos is the 
same across treatment conditions. We ran the experi-
ment for four days from July 19–22 in 2022 on a total of 
59,692 impressions.

4.2. Data
Each observation in our data refers to a unique session, 
which is defined as an event where a user visits a web 
page with video content placed through the vdo.ai 
platform. For each session in our data, we observe a set 
of pretreatment variables, treatment assignment, and a rich 
set of posttreatment variables or outcomes as the main 
focus of our empirical application is to study policy-
making when there are many outcomes. For pretreat-
ment variables, we observe the user’s Internet Protocol 
Address, Time of Day, Date, City, and Country, and we 
observe the Operating System (OS) of the device that the 
user is using. For posttreatment variables or outcomes, 
we collect a rich set of posttreatment variables or out-
comes both on the ad performance and on the video 
engagement metrics. As shown in Figure 7, we place 
pixels at different points in the sessions that indicate 
whether the user has reached those points. For both 
ads, the pixels are placed every 15 seconds,7 and for the 
video, these pixels are placed at every quarter (25%) of 
the video.8 In addition to the pixels shown in Figure 7, 

we also collect information about whether the user has 
clicked on the website link embedded in the ad. How-
ever, the focal ad in our experiment is a brand ad with-
out a clear click objective. As a result, the click-through 
rate is relatively low.9 Overall, our rich feedback envi-
ronment allows us to evaluate the performance of our 
treatment conditions in terms of different ad- and 
video-related metrics used in this industry.

Such detailed tracking also helps us with data clean-
ing. Specifically, we identify whether a user faces techni-
cal issues or uses an ad blocker. In particular, if the pixel 
at the beginning of both the ad and the video returns 
null values, we assume that the user had technical 
issues, such as a network problem. Similarly, if the pixel 
has a null value at the beginning of the ad but a real 
value at the beginning of the video, we conclude that the 
user uses ad blockers. Although this approach identifies 
ad blockers for impressions that are assigned to an ad 
condition, it is clear that we cannot identify ad blockers 
for users in the no-ad condition. However, because our 
main analysis concerns the difference between two ad 
formats, this does not cause a problem in our main anal-
ysis. Overall, we remove 703 observations because of 
technical issues and 528 observations for using ad block-
ers. This gives us a sample of 58,461 observations gener-
ated by 56,662 unique users.

For our main analysis, we only focus on the two ad 
conditions and drop observations for the no-ad condi-
tion, which reduce our sample size to 53,176 sessions 
generated by 51,423 unique users. Because we only use 
the first session for each user, our final sample has a total 
of 51,423 sessions to study. We use this sample through-
out the paper for all the results. We present some basic 
summary statistics of the data. We start with the pre-
treatment variables, which are all categorical variables. 
We find the top three subcategories with the highest 
number of observations for each variable in our data. 
We present this information about each variable along 
with the total number of subcategories in Table 1. As 
shown in Table 1, the hours with the highest traffic are 
6–8 a.m. Mountain Standard Time (MST), which would 
be 5:30–7:30 p.m. in India, where most of the traffic comes 
from. The experiment was run from July 19 through July 
22, and the last two days had the highest traffic.

As indicated in Table 1, there are a total of 956 cities 
in our data. However, over half of the observations are 

Figure 7. (Color online) A Visual Schema of the Experiment 
Design 

Notes. The experiment is run at the impression level. Step 1 refers to 
the case where a user generates an impression, and the randomization 
occurs in step 2. s, seconds. C1-C3 refers to Condition1-Condition3.

Table 1. Summary Statistics of the Pretreatment Variables

Variable No. of subcategories

Top three subcategories and their shares

First Second Third

Hour of day 24 7 a.m. MST (7.76%) 6 a.m. MST (6.82%) 8 a.m. MST (6.76%)
Date 4 07/21/2022 (39.19%) 07/22/2022 (37.20%) 07/20/2022 (14.69%)
City 956 Mumbai (51.87%) Delhi (7.55%) Hyderabad (6.83%)
Country 12 India (99.92%) United States (0.06%) Australia (0.00%)
Operating system 6 Android (79.52%) Windows (13.21%) iPhone (5.31%)
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from Mumbai. It is worth noting that there are many cit-
ies with only one observation in our data. Next, we find 
that the vast majority (99.56%) of all observations occur 
in India. The statistics on our final pretreatment variable 
show that Android OS is the most common OS in our 
data, with around 80% of the total traffic. In Online 
Appendix D, we perform extensive randomization 
checks on the distribution of pretreatment variables to 
ensure that the randomization has been implemented 
correctly in our study.

4.3. Average Treatment Effect Analysis
Before we proceed with the analysis, we tie our notation 
to the methodological framework. We let i denote each 
observation in our data, and we let X and W denote 
the pretreatment covariates and the treatment variable, 
respectively. Because we are interested in the difference 
between the ad formats, we define W as a binary vari-
able, with W� 1 and W� 0 referring to skippable/long 
and nonskippable/short ad formats, respectively.10 For 
inference, we use the common assumptions in the causal 
inference literature: (1) overlap, (2) unconfoundedness, 
and (3) the stable unit treatment value assumption. The 
first two are satisfied by design because we have a ran-
domized, controlled trial. SUTVA is also reasonable 
because there is no interaction between users, and the 
treatment received by all users in the same treatment 
condition is identical (i.e., no multiple versions of the 
treatment). Under these assumptions, we know that 
the average treatment effect is the difference in group 
averages (Neyman 1923). We use this fact for our main 
analysis. Here, in the main text, we present a summary 
of average treatment effects on different managerially 
relevant outcomes as they relate to our multiobjective 
personalization framework, and we present a detailed 
description of outcomes and an interpretation of the 
results in Online Appendices E.1 and E.2, respectively.

We estimate the average treatment effects on the com-
plete set of outcomes and present the results in Table 2, 
where each row presents the results for one outcome. 
The upper part of Table 2 presents the average treatment 

effects for ad-related outcomes. We find that the average 
consumption of the skippable/long ad is significantly 
higher than that of the nonskippable/short ad, with the 
average treatment effect being 0:90 × 15 � 13:50 sec-
onds, which is approximately equal to the length of the 
short ad in our study. We then focus on two other spon-
sored consumption outcomes: (1) second 15 complete 
and (2) ad complete. The former outcome is of interest 
to platforms that charge skippable/long ads once the 
user watches 15seconds. Interestingly, we find that the 
skippable/long version has a significantly higher com-
pletion of the first 15seconds than the nonskippable/ 
short version, despite the skippability of the ad in this 
condition. When we focus on the ad complete outcome, 
we find that the nonskippable/short ad has a substan-
tially higher completion rate, which is expected because 
of the shorter length and nonskippability of this ad ver-
sion. The final ad-related outcome in our study is ad click, 
which measures whether the user clicked on the ad. We 
find no significant difference between the click-through 
rate of ad formats, which is expected because the objec-
tive of the boAt ad campaign in our study is to generate 
more awareness, not performance measures like clicks.

Next, we focus on video-related outcomes that mea-
sure organic consumption. Our main measure of organic 
consumption is the number of quarters the user has 
watched the organic content, which we define as video 
consumption. We find that users in the skippable/long 
condition consume 0.38 quarters less than those in the 
nonskippable/short condition. This is equivalent to a 
9.5-percentage-point difference in the video consumed. 
We break down video consumption into five binary vari-
ables corresponding to the beginning of the video and 
each quarter of the video that is reached. As shown in 
Table 2, all quarters are more likely to be reached in the 
nonskippable/short condition than in the skippable/ 
long condition.

The conflict in average treatment effects on ad con-
sumption and video consumption raises the question 
of substitution between the sponsored and organic 
channels. In order to measure the substitution, one 

Table 2. Average Treatment Effects Across Outcomes

Outcome
Mean of treatment A 
(nonskippable/short)

Mean of treatment B 
(skippable/long)

Mean difference B – A 
estimate p-value

Ad consumption (× 15 seconds) 0.53526 1.43567 0.90041 <0.001
Second 15 complete 0.53526 0.55413 0.01887 <0.001
Ad complete 0.53526 0.21338 �0.32188 <0.001

Ad click 0.00125 0.00128 0.00003 0.926
Video consumption 0.79714 0.41817 �0.37897 <0.001

Video start 0.44535 0.20727 �0.23808 <0.001
Video Q1 reached 0.30804 0.15059 �0.15745 <0.001
Video Q2 reached 0.22146 0.11634 �0.10512 <0.001
Video Q3 reached 0.15768 0.08713 �0.07055 <0.001
Video Q4 reached 0.10995 0.06411 �0.04585 <0.001

Note. The number of observations is 51,423 for all models.
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approach is to regress video consumption on ad con-
sumption to see how the two outcomes are linked. 
However, the main issue with this approach is that 
users can self-select how much they consume an ad, 
causing well-known selection or endogeneity bias. We 
need to use an approach that only uses the exogenous 
variation in ad consumption. Our treatment variable 
provides a fully random exogenous shifter for this pur-
pose. As a result, we can instrument ad consumption 
with our treatment variable and isolate the causal effect 
of ad consumption on video consumption. We present 
the results from both plain and instrumental variable 
regressions in Table 3. Although the results in column 
(1) in Table 3 show a positive association between ad 
consumption and video consumption in the endoge-
nous specification, we find a strong substitution when 
we account for endogeneity bias using our 2SLS model, 
as shown in column (2) in Table 3. Specifically, we find 
that a 15-second increase in ad consumption reduces 
video consumption by 0.42 quarters or 10.52 percentage 
points. Although we do not have the information about 
the exact length of videos, we know that the average 
is around two minutes or 120 seconds. Using a back-of- 
the-envelope calculation, we find that every 15-second 
increase in ad consumption decreases video consump-
tion by 120 × 0:1052 � 12:62 seconds, on average, dem-
onstrating a strong substitution pattern between 
sponsored and organic consumption.

From a platform perspective, this substitution pat-
tern highlights an inherent trade-off in optimizing 
sponsored and organic consumption. At the aggregate 
level, strategies that increase ad consumption (spon-
sored) come at the expense of video consumption 
(organic). As such, this conflict between outcomes cre-
ates a perfect setting to provide a proof of concept for 
our multiobjective personalization algorithms.

4.4. Heterogeneous Treatment Effect Analysis
So far, we have shown a strong substitution pattern 
between ad and video consumption, which poses a 
challenge for the platform that wants to optimize both 
outcomes simultaneously. In this section, we explore 
the heterogeneity in treatment effects to see if the 

substitution pattern persists at a more fine-grained 
level. As such, we work with the conditional average 
treatment effect defined in Section 3.2.1. In principle, if 
the positive average treatment effect on ad consumption 
and the negative average treatment effect on video con-
sumption come from separate portions of our data, the 
solution is clear for the platform. For example, suppose 
that there are two groups of users I a and Iv such that 
I a ∩ I v � ø, where users in I a have a positive CATE on 
ad consumption and a positive CATE on video con-
sumption, whereas users in I v have a negative CATE on 
ad consumption and a negative CATE on video con-
sumption. In this case, the platform’s solution is to 
assign users I a to the skippable/long ad and users in I v 
to the nonskippable/short ad. To test this possibility, we 
need to estimate treatment effects for both outcomes for 
any individual for a vector of covariates Xi.

In recent years, many methods have been developed 
to estimate CATE (Shalit et al. 2017, Wager and Athey 
2018, Nie and Wager 2021). We use causal forests as 
our main method to estimate CATE on both outcomes. 
We refer the interested reader to Wager and Athey 
(2018) and Athey et al. (2019) for detailed algorithm 
presentation. For the set of covariates, we use all of the 
pretreatment variables presented in Table 1 as well as 
the exact time stamp to capture more fine-grained 
time-dependent heterogeneity and the latitude and lon-
gitude of cities to go beyond the city categories and cap-
ture the spatial heterogeneity patterns (if any). We use 
10-fold crossvalidation to tune the hyperparameters of 
the causal forest.

We present the histogram of our CATE estimate for 
both ad consumption and video consumption outcomes. 
Figure 8(a) shows how CATE for the ad consumption 
outcome varies across individuals. As shown in Figure 
8(a), although there is extensive variation in the CATE 
estimates, the sign for all units remains positive. This 
indicates that the skippable/long ad format results in 
greater ad consumption than the nonskippable/short 
format for all individuals in our data. Thus, if we use 
this sole objective for developing a personalized policy, 
the resulting policy will be a uniform skippable/long ad 
condition for everyone.

Table 3. Regression Result for the Link Between Video Consumption and Ad Consumption

Outcome: Video consumption (quarters)

(1) Ordinary least squares (2) Instrumental variable (2SLS)

Ad consumption (×15 seconds) 0.3538*** �0.4209***
(0.0042) (0.0150)

Instruments None Treatment
Weak instruments test 7,567***
No. of observations 51,423 51,423

Notes. Standard errors are reported in parentheses. The weak instrument hypothesis is rejected as the F-statistic in 
the first-stage regression is 7,567 (p < 0.001). 2SLS, two-stage least-squares.

***p < 0.001.
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We then move on to CATE estimates for video con-
sumption as our video-related outcome and visualize 
the distribution of CATE estimates in Figure 8(b). As 
shown in Figure 8(b), although the vast majority of 
CATE estimates are negative, there is a small 3.15% of 
users with positive CATE estimates. Therefore, the opti-
mal personalized policy with respect to video consump-
tion as the objective is almost the same as a uniform 
policy where all users are assigned to a nonskippable/ 
short ad. For both outcomes, we present a more inter-
pretable analysis of treatment effect heterogeneity in 
Online Appendix E.3.

Combining the results from both histograms in 
Figure 8, although we find substantial variation in the 
heterogeneous treatment effects on both ad consump-
tion and video consumption outcomes, the substitution 
pattern persists even at the individual level. To better 
understand the substitution pattern at the individual 
level, we plot the CATE on video consumption against 
the CATE for ad consumption and present the resulting 

scatterplot for a random sample of our observations in 
Figure 9. The first pattern that emerges from Figure 9 is 
that only for a small portion of units do we have the 
same sign for CATE on both outcomes. These points 
(shown in red circles in Figure 9) account for 3.15% of 
all units in our data.

Finally, we ask a broader question. To what extent 
are CATE estimates for these two outcomes in conflict 
at the individual level? Because we want higher CATE 
estimates for both outcomes at the individual level, we 
want a more positive correlation between these CATE 
estimates. On the other hand, a negative correlation 
between these CATE estimates indicates that a higher 
CATE for one outcome is associated with a lower 
CATE for another outcome, thereby making the multi-
objective solution more challenging. As shown in 
Figure 9, there is a weak positive correlation between 
CATE estimates for both outcomes (correlation� 0.13). 
Although the positive association between these CATE 
estimates is not strong, it is still promising as it suggests 

Figure 8. (Color online) The Distribution of CATE Estimates for Ad and Video Consumption 
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Figure 9. (Color online) Scatterplot of CATE Estimates on Video Consumption and Ad Consumption 
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that CATE estimates move in the same direction on 
average. Intuitively, points that contribute most to 
higher ad consumption have a more positive (or less 
negative) impact on video consumption. Thus, the pat-
tern in Figure 9 suggests that multiobjective personali-
zation can be useful for the platform that wants to 
achieve higher sponsored and organic consumption 
outcomes simultaneously. To that end, the task at hand 
is to achieve a good outcome with respect to one objec-
tive without compromising too much on the other. We 
discuss this problem in the next section in greater 
detail.

5. Returns to Multiobjective 
Personalization

5.1. Counterfactual Policy Evaluation
Our main algorithms in Section 3.2 generate a set of 
policies. These policies have not been implemented in 
our data, but we need to evaluate what would have 
happened had the platform implemented these poli-
cies. As such, the question of evaluating a certain policy 
π�becomes one of counterfactual policy evaluation. 
Because our CATE estimates are structural parameters, 
we can relatively compare the performance of a policy 
π�with any given baseline policy. Let Y( j) denote the 
average observed for outcome j in the data. We can 
write

ρj(π)�Y( j) � 1
N
XN

i�1
(π(Xi)�Wi)τj(Xi), (7) 

where the elements of this sum are only nonzero when 
the two policies disagree (i.e., π(Xi)≠ Wi). Although 
this approach to policy evaluation has theoretical guar-
antees, such as consistency and unbiasedness, there are 
a few practical limitations that we must take into 
account. First, like other high-capacity learners, causal 
forests always face the possibility of overfitting. As a 
result, we need a reliable approach to evaluate the per-
formance of policies out of sample that is robust to 
overfitting bias. More subtly, even if the CATE esti-
mates do not exhibit overfitting bias, using the same 
data for policy identification and policy evaluation 
can result in model-based biases. That is, the policy 
identifier may exploit the variation in random noise to 
generate a policy. If we evaluate the performance of 
the policy using the same set of estimates, our policy 
evaluation is subject to the same type of model-based 
error. Thus, it is important to use a policy evaluation 
approach that is generalizable and less model based.

To address this challenge, we use the inverse propen-
sity scoring estimator defined in Definition 5 as fol-
lows:

ρ̂IPS
j (π; D) �

1
N
X

i∈D

π(Xi)Wi

e(Xi)
+
(1� π(Xi))(1�Wi)

1� e(Xi)

� �

Y( j)i :

IPS provides an unbiased estimator of the expected out-
come under any policy π. Notably, IPS is a model-free 
estimator as it does not rely on any outcome model to 
estimate the outcome under a given policy. Instead, it 
uses actual outcomes from the data and weights them 
based on their inverse propensity score to consistently 
estimate what the expected outcome would have been 
had policy π�been implemented.11 Another advantage 
of the IPS estimator is in quantifying the uncertainty. 
One could use the finite-sample variance of the 
Horvitz–Thompson estimator to build confidence inter-
vals around the policy evaluation estimates. Because 
the IPS estimator is defined on the data D, we can easily 
evaluate both the in-sample performance and the out- 
of-sample performance of different policies. In particu-
lar, we randomly split our data into two sets, where 
60% of the observations construct the training data 
DTrain and the remaining 40% constitute the test data 
DTest. We address the model-based error by performing 
CATE estimation and policy identification on the train-
ing data and evaluating its performance on separate 
held-out test data. Besides its robustness to model- 
based errors, our approach is useful as it mimics the 
practice of real-time policymaking, where the platform 
uses a batch of data to identify the policies and assign 
policies in real time (test data). Thus, platforms can 
readily apply our framework.

5.2. Policy Identification and Benchmarks
In this section, we identify different sets of policies 
using the training data and evaluate them on both 
training and test data. To identify policies using only 
training data, we need to re-estimate CATE for both ad 
consumption and video consumption outcomes on the 
training data. This ensures that the observations on the 
held-out test set are not used to estimate CATE. Let 
τ̂Train

A and τ̂Train
V denote the estimated CATE functions 

using the training data for ad consumption and video 
consumption outcomes, respectively. We use these esti-
mates to identify different sets of policies. We present a 
short description of these policies as follows, and we 
refer the reader to Online Appendix F for greater 
details. 
• Scalarization with causal estimates. We use B � {(β, 

1� β) |β � i=500, 0 ≤ i ≤ 500} as the full set of weights 
and run Algorithm 1 using the CATE estimates for 
both outcomes as inputs. The output is a set of policies 
denoted by ΠMO-SCE containing 501 policies.
• Scalarization with policy learning. We use the same 

B, but we use the policy learning approach to identify 
policies. We use D � {Xi, Wi, e(Xi), τ̂Train

A (Xi), τ̂Train
V (Xi), 

Y(A)i , Y(V)i } as the input for MO-SPL.12 Unlike MO-SCE, 
we do not restrict ourselves to linear models. We use 
XGBoost as our learning algorithm for the classification 
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task in Algorithm 2. The output is a set of policies 
denoted by ΠMO-SPL containing 501 policies.

For policy comparison and benchmarking, we con-
sider the following policies. 
• Single objective for ad consumption (SO-AC). This is 

the personalized policy for ad consumption, which we 
can define as πSO-AC(Xi) � 1(τ̂Train

A (Xi) ≥ 0). This policy 
is the same as the MO-SCE policy when β�1 (weight 
for the ad consumption objective).
• Single objective for video consumption (SO-VC). This 

is the personalized policy for video consumption, which 
we can define as πSO-VC(Xi) � 1(τ̂Train

V (Xi) ≥ 0). This pol-
icy is the same as the MO-SCE policy when β�0.
• Mixed strategy single objective (SO-Mix). For any 

α ∈ [0, 1], we use a mixed strategy policy that uses 
πSO-AC(·) with probability α�and πSO-VC(·) with proba-
bility 1�α. For consistency with our main policies, we 
use α ∈ {i=500}500

i�0 to generate the set of policies ΠSO-Mix.
• Random policy (random). For any α ∈ [0, 1], we use 

a mixed strategy policy that uses the treatment condi-
tion (skippable/long) with probability α�and the con-
trol condition (nonskippable/short) with probability 
1� α. For consistency, we use α ∈ {i=500}500

i�0 to generate 
the set ΠRandom.

Overall, we have four sets of policies (ΠMO-SCE, 
ΠMO-SPL, ΠSO-Mix, and ΠRandom) and two policies 
(πSO-AC(·) and πSO-VC(·)). The single-objective uniform 
policies and the fully random policies are also helpful 
benchmarks to use. However, as shown earlier, single- 
objective personalized policies are almost identical 
to single-objective uniform policies in our empirical 
example with ad consumption and video consumption 
as the objectives. Thus, to avoid clutter, we do not 
include these benchmarks.

5.3. Policy Comparison Results
For any policy π, we can use the IPS estimator in Defini-
tion 5 to estimate the expected video consumption and 
expected ad consumption under that policy on both 
training and test data. The resulting points are (ρ̂IPS

A (π;

DTrain), ρ̂IPS
V (π;DTrain)) and (ρ̂IPS

A (π;DTest), ρ̂IPS
V (π;DTest))

in training data and test data, respectively. In addition to 
the policies described in the previous section, we use 
two other reference points: (1) data, which shows the 
average outcomes for the experiment run in our data, 
and (2) utopia, which is the best achievable point and 
takes the expected outcome under the single-objective 
personalized policy for that outcome. Figure 10 shows 
the expected outcomes for these two points along with 
the expected outcomes under all policies described in the 
previous section separately for the training and test data. 
Green circles in Figure 10 constitute the Pareto frontier 
under the scalarization with causal estimates algorithm, 
whereas purple plus signs in Figure 10 constitute the 
Pareto frontier under the scalarization with policy learn-
ing algorithm.13 Because both single-objective personal-
ized policies are almost the same as the uniform policy, 
the set of SO-Mix and random policies perform very 
similarly. This is not generally the case if the single- 
objective personalized policies are nonuniform.

When comparing these Pareto frontiers with the 
single-objective policies, we see substantial gains as 
most mixed strategy single-objective policies are domi-
nated by the Pareto frontier with a relatively large 
margin. To quantify these gains, we employ two 
approaches. First, we use the covered area proportion 
measure defined in Section 3.3, and we calculate the 
proportion of the area covered between the SO-Mix 
and utopia. On the training set, we find 43% and 48% 

Figure 10. (Color online) Policy Evaluation on Training and Test Data 
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CAP measure for MO-SCE and MO-SPL, respectively. 
The CAP measure is 43% for both policies on the test 
set. We see a train-test performance discrepancy for 
MO-SPL because it uses a more flexible learner, which 
is more likely to overfit on the training data, whereas 
MO-SCE uses a linear classification that is less prone to 
overfitting. The identical performance on the test set is 
expected as both algorithms optimize the same objec-
tive in different ways. Overall, a 43% CAP measure on 
the test set means that the multiobjective personaliza-
tion algorithms push the Pareto frontier and generate a 
number of policies that create significant gains in one 
outcome without sacrificing the other outcome.

Our second approach to demonstrate the value of 
multiobjective personalization focuses on identifying 
policies that improve one outcome without compromis-
ing the other one. It is important to notice that a platform 
cannot simultaneously achieve all the points on the 
Pareto frontiers shown in Figure 10. This is because the 
platform can select only one policy. The value of multi-
objective personalization is in providing a complete pic-
ture for managers so that they can choose one of the 
policies on the Pareto frontier that best achieves their 
objectives. To that end, we highlight three findings that 
substantially improve one outcome without sacrificing 
the other:

5.3.1. High Video Consumption, Medium Ad Consump-
tion. From Figure 10(a), we see that the manager can 
choose a variety of policies with great video consump-
tion performance while improving expected ad con-
sumption. For example, the manager can choose one of 
the MO-SCE policies with β � 0:246 that results in 4.8% 
lower video consumption compared with the SO-VC 
policy while increasing ad consumption by 60.0% on 
the training data. When comparing the performance of 
this policy (πMO-SCE

0:246 ) with that of the single-objective 
video consumption (πSO-VC) on the test data, we find 
that it will result in a drop of 4.4% in video consump-
tion while increasing ad consumption by 61.0% (from 
0.57 to 0.92 or alternatively, from 8.58 to 13.82seconds).

5.3.2. High Ad Consumption, Medium Video Consump-
tion. On the right of Figure 10(a), the manager can 
choose a policy from MO-SPL with β � 0:420 that 
achieves a 58.2% improvement in the expected video 
consumption compared with the single-objective ad 
consumption policy while only losing 13.3% in the 
expected ad consumption. On the test data, the policy 
πMO-SPL

0:420 performs 53.2% better in terms of video con-
sumption than the (πSO-AC) policy at the expense of 
15.2% worse performance in terms of the expected ad 
consumption. Notably, one could consider video Q1 
reached as a hypothetical point where the platform can 
place a midroll ad. We use the IPS estimator for this 
outcome to evaluate the proportion of users who reach 

that point and generate a midroll impression under 
both πMO-SPL

0:420 and SO-AC. Interestingly, we find that the 
proportion of users who reach the first quarter of the 
video is 22.7% under πMO-SPL

0:420 . In contrast, this propor-
tion is 14.7% under SO-AC, suggesting a 55.5% increase 
in the number of potential midroll ad impressions that 
would be generated under πMO-SPL

0:420 relative to SO-AC.

5.3.3. High Video Consumption, 15-Second Ad Con-
sumption. A useful feature of multiobjective personali-
zation is that we can fix a value for one objective and 
examine the performance in terms of the other objec-
tive. Because ad consumption cannot technically be 
more than 15 seconds in the nonskippable/short ad con-
dition, setting ad consumption to 15 seconds would be a 
reasonable objective. We find that the MO-SCE policy 
with β � 0:274 achieves 15seconds of expected ad con-
sumption on both training and test sets. We compare the 
performance of policy πMO-SCE

0:274 with the two single- 
objective policies. Compared with the single-objective 
video consumption policy, it improves the expected ad 
consumption by 74.0% while only reducing the video 
consumption by 9.5% as measured on the test data. On 
the other end, policy πMO-SCE

0:274 improves video consump-
tion by 81.9% compared with the single-objective ad con-
sumption policy while losing 29.2% in ad consumption.

In summary, we find that multiobjective personaliza-
tion results in substantial gains in one objective without 
sacrificing too much in the other objective. Intuitively, 
multiobjective personalized policies achieve this by 
correctly identifying the points in the data whose gains 
in one objective outweigh their loss in the other objec-
tive. From a practical standpoint, platforms can use a 
batch of data to estimate the primitives, identify the 
Pareto frontier, and then decide which policy on the 
Pareto frontier is more desirable.

5.4. Other Case Studies
We demonstrate that the platform can create substan-
tial value by using multiobjective personalization, even 
in a setting with an almost-perfect substitution between 
the two objectives. As shown earlier, for over 96% of 
the data points in our data, we observe some degree of 
substitution between ad consumption and video con-
sumption. The gains can be significantly larger when the 
two objectives are less in conflict with each other. To 
demonstrate this point, we focus on another set of objec-
tives in Online Appendix G: (1) second 15 complete and 
(2) video consumption. Because many platforms charge 
advertisers once their ad is watched for 15 seconds (e.g., 
Facebook), using these two objectives for multiobjective 
personalization is reasonable for profit-maximizing plat-
forms. We present the results of this practice in Online 
Appendix G and document substantial gains from a mul-
tiobjective personalization policy.
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5.5. Implications
Advancements in marketing measurement allow firms 
to track multiple outcomes of interest at the individual 
level. For example, a social media platform can mea-
sure how much time a user spends on each post, how 
much ad revenue the user generates, and how many 
posts the user writes and shares, all of which are pre-
sumably outcomes the platform wants to optimize. 
Naturally, these outcomes have some conflict with 
each other. We present a general framework for multi-
objective personalization that can be used by any 
manager or decision maker deciding how to assign 
interventions to individuals. Our proposed approach 
empirically identifies the Pareto frontier of policies in 
terms of multiple outcomes, which helps managers 
eliminate all of the dominated policies. Further, plat-
forms can identify the Pareto optimal policies on a 
batch of training data and use them as a decision- 
making dashboard. This feature of our framework 
allows managers to select the Pareto optimal policy 
that best balances their objective and then roll it out on 
the test data.

More specific to our empirical setting, our paper has 
several implications for video advertising platforms. 
These platforms often have multiple ad- and video- 
related objectives, some of which are in direct conflict 
with the other ones. In our study, we demonstrated a 
substitution pattern between sponsored and organic 
content consumption, and we showed that the platform 
could create value using our multiobjective personali-
zation framework. Importantly, our framework is fairly 
general, and a platform can use it across a range of sce-
narios. For example, if the price per second for ad con-
sumption is different across ad formats, the platform 
needs to rely on a weighted ad consumption measure 
that reflects ad revenues. Our framework can easily 
accommodate such modifications in the outcome of 
interest. More broadly, some platforms may be inter-
ested in increasing the rate at which the user reaches a 
certain point within the ad because they charge adverti-
sers based on that rule. In our study, we can consider the 
15-second threshold and perform multiobjective person-
alization for second 15 complete and video consumption as 
our main outcomes of interest (see Online Appendix G 
for the results from this practice). More generally, the 
platform can have more than two objectives. For exam-
ple, many streaming platforms also have a subscription- 
based ad-free version as an alternate revenue channel. 
As a result, they may be interested in optimizing not 
only ad and video consumption but also, subscription 
revenue. Our framework can easily be extended to those 
settings.

Besides offering a prescriptive solution to platforms 
given the set of objectives, our paper has important 
market design implications for video advertising plat-
forms. These platforms generally sell ads through 

auctions. Any auction is characterized by an allocation 
rule and a payment rule. Our paper highlights why the 
allocation rule should not be only based on the ad 
performance but should also be based on the external-
ity that it imposes on the system. Prior literature on 
advertising auctions has studied different forms of ad 
allocation that capture the externality an ad exposure 
imposes on other ads (Wilbur et al. 2013, Rafieian 
2020). Our paper also suggests another form of exter-
nality imposed by ads on content creators, which can 
affect the supply of ad impressions for the platform in 
the long run. Platforms can incorporate all these exter-
nalities in their allocation and present exact or approxi-
mate solutions to this allocation problem. An example 
of an approximate solution would be capturing these 
externalities in the quality scores assigned to ads.

These externalities have immediate implications for 
the payment mechanism in video advertising auctions. 
In particular, if the platform incorporates the externali-
ties in ad allocation, they need to adjust payments to 
achieve properties, such as truth telling. Another impor-
tant implication of our work is for the payment rule in 
these problems. That is, the platform needs to decide 
when to charge the advertisers. Some platforms use 
cutoff-based rules, where the advertiser is charged for 
skippable ads if the user reaches second 30 of the ad. 
Part of the reason for having these rules in place is 
to account for the externalities that an ad exposure 
can impose on content creators. Given the substitution 
between ad and video consumption, our findings suggest 
that a consumption-based payment rule can better 
account for these externalities. Furthermore, designing an 
auction with clearer guarantees under a consumption- 
based payment rule would be easier than in environ-
ments with arbitrary cutoff-based rules.

6. Conclusions
Platforms often want to optimize multiple outcomes. A 
few examples include an online publisher that wants 
higher sponsored and organic content consumption; a 
game designer who wants players to play more and 
pay more; and a social media platform that wants more 
time spent on the platform, ad revenues, and user- 
generated content. Although optimizing all these out-
comes seems desirable, finding an optimal intervention 
for all desired outcomes is often challenging. In some 
cases, multiple outcomes of interest are in some form of 
structural conflict. In this paper, we offer personaliza-
tion as a solution to this problem and propose a multi-
objective personalization framework that can reliably 
identify the Pareto frontier of personalized policies in 
terms of multiple outcomes. In particular, we propose 
the two algorithms scalarization with causal estimates 
and scalarization with policy learning that combine the 
insights from the causal machine learning literature 
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with that of multiobjective optimization and offer 
solutions with theoretical guarantees. Intuitively, these 
algorithms exploit the magnitude of the substitution at 
the individual level to assign individuals to policies.

We apply our framework to a canonical conflict in 
outcomes between sponsored versus organic content 
consumption. In collaboration with vdo.ai, we con-
ducted randomized experiments where users were 
randomly assigned to either the skippable/long or 
nonskippable/short versions of the same ad. We docu-
ment a high degree of substitution between the two key 
outcomes ad consumption and video consumption, even at 
the individual level. We then apply our multiobjective 
personalization algorithms and find that the resulting 
policies improve the outcome in one dimension com-
pared with single-objective personalized policies with-
out sacrificing the outcome in the other dimension. In 
particular, we show that compared with a single- 
objective personalized policy that only optimizes video 
consumption, there is a policy on the identified Pareto 
frontier that improves ad consumption by 61.0% while 
only reducing video consumption by 4.4%. Likewise, 
we document that compared with the single-objective 
personalized policy that only optimizes ad consump-
tion, there is a multiobjective personalized policy 
that increases video consumption by 53.2% while only 
decreasing the ad consumption outcome by 15.2%. We 
discuss the implications and how the platform can use 
our framework for optimal decision making in real 
time.

Our paper makes several contributions to the litera-
ture. Methodologically, we combine insights from the 
multiobjective optimization literature with causal 
machine learning and present a framework for multiob-
jective personalization. Our proposed algorithms take 
approaches for conditional average treatment effect esti-
mation and policy learning, and they identify a set of 
policies that are Pareto optimal. From a managerial 
standpoint, our framework is applicable to other settings 
where conflicting treatment effects on multiple out-
comes are of managerial concern. Our framework offers 
managers and decision makers the flexibility to assess 
the Pareto frontier separately on a batch of training data 
and select policies that align with their desired balance 
between outcomes to roll out. Substantively, we show-
case a new area where personalization can create value. 
Unlike prior literature on personalization that primarily 
emphasizes the value of personalization through covari-
ate richness, we show how a decision maker could 
use the variation in multiple outcomes to differentiate 
between users and create value through personalization 
in scenarios where multiple outcomes exhibit substantial 
conflict. Particularly, we establish notable gains in one 
outcome without compromising another in a context 
marked by significant substitution effects. Finally, our 
paper contributes to the literature on the interplay 

between sponsored and organic consumption by demon-
strating how much personalization can help manage a 
structural conflict between outcomes. Our findings have 
important market design implications for advertising plat-
forms as they highlight the importance of a multiobjective 
approach for ad allocation and payment rules.

Nevertheless, our paper has limitations that serve as 
excellent avenues for future research. First, although 
our proposed scalarization algorithms are scalable for 
most practical settings where we want to optimize two 
or three objectives, the set of weights becomes exponen-
tially large as we want to incorporate more objectives. 
Future research can investigate more efficient ways of 
using weights as well as approaches to incorporate 
some domain knowledge to improve the scalability of 
the algorithm. Second, as is common in the personaliza-
tion literature, our algorithms require the joint distribu-
tion of covariates and potential outcomes to be fixed, 
abstracting from cases where users act strategically to 
receive the personalized treatments they prefer in the 
long run. Future research can extend our framework to 
such strategic settings similar to Munro (2024). Third, 
although we use a rich feedback environment on the 
logged consumption of ads and videos, we do not have 
data on whether users pay attention to the screen as in 
McGranaghan et al. (2022). Using attention data can 
further illuminate mechanisms behind users’ ad and 
video consumption. Finally, our algorithms involve 
uncertainty and estimation error. Future research can 
theoretically examine the generalization error bounds 
for our algorithms and offer prescriptive solutions for 
algorithm selection.
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Endnotes
1 See Wilbur (2016) for a great summary of the ad avoidance 
literature.
2 We use sponsored consumption interchangeably with ad con-
sumption throughout the paper, and we use organic consumption 
interchangeably with video consumption throughout the paper.
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3 We can prove it by contradiction; if there is a policy π′ that domi-
nates π�in all objectives, then it is a contradiction that π�is the opti-
mal solution to the scalarized objective.
4 It is worth emphasizing that the reason why the two algorithms 
identify different policies is the randomness involved in the empiri-
cal application. Further, unlike the scalarization with causal esti-
mates policy that only uses CATE estimates, the scalarization with 
policy learning algorithm uses other covariate inputs and maps 
them to policies, which induce some natural differences in the pol-
icy assignment. Finally, some individual-level differences between 
policies are less consequential for the final estimate of the expected 
outcome under a policy across all users, especially when assign-
ment to either policy does not change the objective. For example, 
for points around the line in Figure 3, the assignment to either pol-
icy does not drastically shift the objective.
5 Advertisers care about the ad effect on conversion outcomes, 
which determines their willingness to pay for units of sponsored 
consumption. In our analysis, we assume a fixed price per unit of 
sponsored consumption. It is easy to relax this assumption and 
directly optimize for ad revenues.
6 This inventory is unsold only for research and development pur-
poses, and it does not include impressions that are unsold in the 
auction. Therefore, the distribution of impressions in this inventory 
is the same as the impressions that are auctioned off.
7 It is worth noting that the ad consumption in the nonskippable/ 
short condition is recorded at the quarter level. However, we do not 
use that information to balance the unit of our ad consumption out-
come across treatments. Our results are robust when we incorporate 
this information.
8 It is worth noting that videos can be of different lengths. For 
example, the first quartile for a two-minute video is reached after 30 
seconds, whereas this point can be reached after 10 seconds in a 
40-second video. This is a limitation of our analysis. However, the 
video lengths would not significantly differ across groups because 
we randomize the treatment.
9 In general, industry reports indicate that the primary focus of digi-
tal video ads is to increase brand awareness as opposed to improv-
ing objective performance measures, such as click or purchase 
(Ferguson 2023).
10 We only use these two treatment groups in the main text, but we 
present some results with the no-ad condition in Online Appendix E.
11 See Rafieian and Yoganarasimhan (2023) for a detailed explana-
tion of the intuition behind this estimator.
12 Normally, one could drop the CATE estimates from inputs. How-
ever, the model with estimated CATEs ensures a better perfor-
mance, so we include them as inputs.
13 The existence of some dominated points within the identified Pareto 
frontier is expected because we use a separate model-free approach 
for policy evaluation that captures the randomness in the data.
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