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Abstract

Personalized recommendation systems are now an integral part of the digital ecosys-

tem. However, users’ increased dependence on these personalized algorithms has

heightened concerns among consumer protection advocates and regulators. In this

work, we bring an information-theoretic perspective to this problem and examine the

underpinnings of algorithmic dependence and its downstream implications for users’

preference learning and independent decision-making ability, an important construct

given the growing fear of adversarial AI. We develop a utility framework where users

consume experience goods and sequentially update their preference weights for product

attributes. We theoretically establish regret bounds for different types of users based

on their dependence on the personalized algorithm. Our theoretical results demonstrate

the rationality of algorithmic dependence as the gain from following the personalized

algorithm grows linearly with time periods. We then develop an empirical framework to

obtain model-free measures of regret for different user types. We find that personalized

algorithms generate significant welfare gains, but these gains come at the expense of

users’ preference learning and independent decision-making. Finally, we demonstrate

that simple policy interventions can help balance the trade-off between welfare and

learning, offering insights for both platforms and users.
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1 Introduction

Personalized recommendation systems are now an integral part of the digital ecosystem.

Digital platforms use massive amounts of consumer-level data to deliver personalized recom-

mendations. One of the canonical examples of recommendation systems is the Netflix movie

recommendation algorithm, which reportedly saves the company over one billion dollars

annually by reducing the churn rate [Gomez-Uribe and Hunt, 2015]. Other examples include

Facebook and Twitter’s news feed personalization, Amazon’s product recommendation, and

YouTube’s video recommendation algorithm.

In today’s digital age, the online marketplace is saturated with many options, presenting

users with the challenge of sifting through too many options to find what they truly want.

Personalized recommendation systems have emerged as a solution to this problem by reducing

users’ search costs and simplifying decision-making. These systems are designed to effectively

narrow down options in real-time and guide users towards products or services that best align

with their preferences and needs. By doing so, a personalized recommendation system ensures

that users can select a fitting item without the need to explore the vast digital landscape

exhaustively.

However, as the adoption of and reliance on personalized recommendation systems grow,

there are increasing concerns regarding users’ algorithmic dependence [Buçinca et al., 2021].

Prior research has shown the pitfalls of algorithmic dependence by documenting the users’

tendency even to take clearly incorrect recommendations [Spatharioti et al., 2023], risks

to user well-being [Banker and Khetani, 2019], and inefficiencies in users’ decision-making

[McLaughlin and Spiess, 2022]. Regarding the mechanism behind algorithmic dependence,

prior work in economics and marketing has suggested the presence of time-inconsistent

preferences [Allcott et al., 2022] and search costs [Ursu, 2018]. However, little is known about

the algorithm’s information advantage and how it feeds algorithmic dependence.

In this work, we bring an information-theoretic perspective to this problem and examine the

underpinnings of algorithmic dependence and its downstream implications for users’ preference

learning. In particular, we study contexts where users consume content sequentially and may

have uncertainty about their preferences given the vast space of product features, which they

resolve through experience. Personalized recommendations influence the process through

which users learn their preferences by affecting the decisions they make. For example, a news

reader interested in social justice topics may rarely explore other content if the algorithm

correctly identifies her taste and only exposes her to this type of content. Thus, dependence

on algorithmic recommendations can have important implications for user learning.
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Understanding algorithmic dependence and its downstream effects on users’ learning is

crucial from a consumer protection perspective, as users who heavily rely on algorithms

without fully learning their preferences are more vulnerable to digital manipulation by

adversarial AI, a topic of growing concern among policy-makers [Kusnezov et al., 2023].

In particular, when users lack a clear understanding of their own preferences, they make

poorer decisions in the absence of recommendation systems, creating a feedback loop in

which they become increasingly dependent on these systems while learning less about their

own preferences. In this paper, we study the interplay between personalization, algorithmic

dependence, and preference learning and aim to answer the following questions:

1. How does the algorithm’s information advantage translate into better recommendations?

Are there information-theoretic guarantees on the regret performance of personalized

recommendation systems?

2. How does the dependence on a personalized algorithm affect user learning? How can

we quantify the impact?

3. What consumer protection policies could generate good recommendations while helping

users learn their preferences?

To answer these questions, we face several challenges. First, we need a theoretical

framework that allows us to formally characterize the personalized algorithm’s information

advantages and disadvantages relative to individual users. In particular, we need our

framework to capture learning by the algorithm and users separately from any given prior.

Second, we need to theoretically compare the outcomes for users who follow personalized

algorithms with those who do not. However, since algorithms and users operate under different

conditions, the theoretical guarantees, such as regret bounds, often include parameters that

make them inherently incomparable. Hence, we need to obtain comparable regret bounds

that allow us to assess the rationality of algorithmic dependence. Third, we need an empirical

framework to evaluate the performance of different algorithms without necessarily deploying

those policies online. In particular, we want the evaluation process to be model-free so we do

not need to rely on model-based outcome estimates.

To address our first set of challenges, we build a general linear utility framework, where

users have some preference parameters over the space of product features, and products have

search and experience features, consistent with Nelson [1974]. Given the high dimensionality

of the feature space and the continuous introduction of new features and styles in many

applied settings (e.g., movies, food), we allow users to exhibit any level of uncertainty about
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their own preference parameters and quantify this uncertainty using the well-known Shannon

entropy measure [Shannon, 1948].1 To characterize users’ learning, we turn to the literature

on Bayesian learning and model users who update the posterior distribution of their preference

parameters [Ching et al., 2013]. For users’ decision-making, we use the Thompson Sampling

approach as it incorporates users’ Bayesian learning and is behaviorally plausible [Schulz

et al., 2019, Mauersberger, 2022, Ding et al., 2022]. Under Thompson Sampling algorithms,

users sample from the posterior distribution of preferences to choose an item and update the

posterior distribution according to their experience. We then characterize the personalized

recommendation system and its decision-making process as a low-rank model that mimics

the reality of personalized algorithms used by platforms and parsimoniously accounts for the

platform’s information advantage over a single user who only has access to search features.

For the second challenge, we turn to the literature on bandits [Lattimore and Szepesvári,

2020]. In particular, given the central role of information advantage in our study, we focus on

the bandits literature that offers information-theoretic regret bounds for the performance

of different adaptive learning algorithms [Russo and Van Roy, 2016]. To isolate the impact

of recommendation systems on outcomes, we focus on two types of users: (1) self-exploring

users who make decisions on their own as though there is no recommendation system,

and (2) recommendation-system-dependent (RS-dependent henceforth) users who follow the

recommendations provided by the recommendation system. We find that the regret for self-

exploring users has a lower bound that scales linearly in time periods because self-exploring

users can, at best, identify the first-best product based on the search features. Conversely,

the RS-dependent user has an information-theoretic upper bound for regret that grows

sub-linearly in time periods. Together, our theoretical findings suggest that the welfare gain

from following the RS grows linearly in time periods, highlighting a mechanism for rational

dependence solely through the algorithm’s information advantage.

Third, to empirically examine the impact of personalized algorithms on both welfare

and learning outcomes, we use MovieLens data, which is the main public data set used as

a benchmark for personalized recommendation systems. To facilitate a model-free regret

evaluation, we focus on a small sample of users who have provided many ratings so we can use

their observed outcomes instead of estimating them from models. We then take a hold-out

subset of size 20 from the movies they have rated and exclude it from the training part. This

creates a subset of products for each user in the test set, which allows us to evaluate how

1It is worth emphasizing that our information-theoretic framework encompasses the classical economics
assumption that users have full knowledge of their preferences as a special case, which makes our approach
more general and agnostic regarding the degree of uncertainty in users’ preferences.
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different each model’s prescription is from the observed first-best in the set. Lastly, we embed

a state-of-the-art matrix factorization algorithm to simulate a personalized algorithm that

captures the reality of algorithms used by the platforms [Cortes, 2018].

We apply our empirical framework to the MovieLens data and examine regret and

learning outcomes. We first focus on the algorithm’s information advantage and welfare

gains from following the algorithm. We find a significantly better regret performance by the

personalized algorithm. Notably, even compared to the self-exploring user who knows her

own preferences, the personalized algorithm has a persistent advantage. Further, our results

show that the algorithm quickly surpasses the performance of the self-exploring user with

known preferences, emphasizing its efficiency due to low-rank learning. This is an important

empirical finding, as we do not impose any specific rank constraint that forces the problem

to be low-rank. Together, the algorithm’s better long-run performance and faster learning

rationalize algorithmic dependence.

Next, we focus on the implications of algorithmic dependence for learning. We first show

that the absolute amount of preference learning is higher for self-exploring users than for

RS-dependent users when they start from an identical prior. Motivated by the trade-off

between welfare and learning, we develop a new regret measure defined as counterfactual

regret, which helps quantify the potential welfare consequences of insufficient learning. The

counterfactual regret measures the expected regret incurred by a user in each period if they

make decisions independently without the help of the personalized algorithm. As such, a

user with insufficient learning would make worse decisions on their own. The key advantage

of this measure is that it has the same unit as our main regret measure, which offers greater

interpretability and facilitates joint optimization of welfare and learning outcomes. We

compute counterfactual regret for RS-dependent users and show that while these users enjoy a

low regret due to following personalized recommendations, they have a higher counterfactual

regret than self-exploring users because they become worse independent decision-makers in

the absence of personalized algorithms. Therefore, our examination of learning outcomes

suggests that although personalized algorithms help users make better decisions that increase

their welfare, these algorithms can act as a barrier to user learning since these algorithms

can limit the organic exploration process users engage in.

An immediate question that arises, given the trade-off between welfare and learning, is

whether there are policies that can balance the trade-off. We consider a simple class of

policies whereby the recommendation system is probabilistically unavailable for a proportion

of time periods. Notably, we find that there are policies in this class of policies that push
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the Pareto frontier of welfare and learning, find the right balance in the trade-off between

these two outcomes, and achieve good outcomes in terms of both regret and counterfactual

regret. Specifically, we find that with a small amount of randomization in the availability

of the algorithm, users will learn almost the same amount as self-exploring users while only

sacrificing a small amount of welfare. Our findings offer important implications for platforms

and users who want to self-regulate.

In summary, our paper makes several contributions to the literature. Substantively, we

present a comprehensive study of the information advantage of personalized algorithms—how

this advantage enhances consumer welfare while creating a cycle of algorithmic dependence

that hinders consumers’ preference learning and independent decision-making. Through a

series of theoretical and empirical analyses, we show that the information advantage alone can

rationalize algorithmic dependence, even in the absence of search costs or time-inconsistent

preferences, which are often used to justify such dependence. While concerns related to privacy,

fairness, and polarization have been extensively studied in the literature on personalized

recommendation systems, the topic of algorithmic dependence and its downstream effects

on users’ learning has received less attention. Our work extends this policy debate by

uncovering the underpinnings of algorithmic dependence and its negative consequences for

users’ independent decision-making, offering insights that are increasingly relevant given

growing concerns about adversarial AI. Methodologically, we introduce a framework that

allows us to establish theoretical regret bounds for users based on their dependence on

personalized algorithms. A key innovation of our approach is its ability to capture the

information advantage of personalized algorithms through a low-rank assumption and access

to experience features unavailable to users. Additionally, we develop a counterfactual regret

measure that serves as a valuable benchmark for evaluating the effects of adversarial AI.

Finally, from a policy standpoint, we identify exploration-based policies that are both simple

to implement and effective in achieving desirable outcomes in terms of consumer welfare and

learning.

2 Related Literature

First, our paper relates to the literature on personalization. Prior methodological work in this

domain has offered a variety of methods to generate personalized policies, such as low-rank

matrix factorization models for collaborative filtering and a host of causal machine learning

methods [Linden et al., 2003, Mazumder et al., 2010, Athey and Imbens, 2019, Koren et al.,

2021, Rafieian and Yoganarasimhan, 2023]. Related applied work in this domain has focused

on different aspects of personalization, such as developing personalized algorithms tailored
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to specific problems [Hauser et al., 2009, Urban et al., 2014, Liberali and Ferecatu, 2022,

Rafieian, 2023, Rafieian et al., 2023, Lu et al., 2025], the interplay between personalization

and consumer protection policies [Goldfarb and Tucker, 2011, Johnson et al., 2020, Rafieian

and Yoganarasimhan, 2021, Johnson et al., 2023, Bondi et al., 2023, Despotakis and Yu, 2023,

Ning et al., 2025], and the tension between content homogenization vs. content diversity

as a result of personalization [Fleder and Hosanagar, 2009, Nguyen et al., 2014, Song et al.,

2019, Holtz et al., 2020, Aridor et al., 2020, Anwar et al., 2024]. Our work extends this

stream of work by bringing an information-theoretic view and focusing on the foundations of

algorithmic dependence and its negative impact on users’ learning. In particular, we combine

the insights from the literature on matrix factorization with bandits to establish theoretical

regret bounds for users as a function of their dependence.

Second, our paper relates to the literature on consumer search and personalized rankings

[Jeziorski and Segal, 2015, Ursu, 2018, Dzyabura and Hauser, 2019, Yoganarasimhan, 2020,

Korganbekova and Zuber, 2023, Donnelly et al., 2024]. Most papers in this literature build

a sequential search model akin to Weitzman [1979] to model consumers’ search behavior

and estimate structural parameters such as search costs. Under this modeling framework,

consumers do not learn their preferences through experience but realize the match value of

each item upon a costly search. The exception is Dzyabura and Hauser [2019], which allows

for learning, but that paper does not allow for experiential learning. A common theme in the

stream of work on consumer search is that personalized algorithms create value by reducing

consumers’ search costs. In that sense, search cost is the main driver behind algorithmic

dependence. Our work differs from this stream of literature as we focus on a channel separate

from search cost that drives algorithmic dependence: the algorithm’s information advantage.

In particular, we characterize the personalized algorithm’s information advantage in the

context of experience goods, which makes it a better predictor of whether the user likes the

product or not than the users themselves.

Third, our paper relates to the literature on consumer learning. Understanding consumer

learning dynamics has been of great interest to researchers in marketing [Roberts and Urban,

1988]. Ever since the seminal paper by Erdem and Keane [1996] who modeled forward-looking

consumers who make decisions under uncertainty and engage in an exploration-exploitation

trade-off, numerous studies have focused on choice contexts where dynamic learning plays

an important role [Ackerberg, 2003, Crawford and Shum, 2005, Hitsch, 2006, Ching et al.,

2013]. An important issue in this stream of work is computational complexity, which has

motivated researchers to adopt heuristic-based strategies, which yield performance similar
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to the dynamic programming strategy, while having the advantage of computational and

cognitive simplicity [Lin et al., 2015, Tehrani and Ching, 2023]. We extend this stream of

literature by offering a Thompson Sampling approach for characterizing consumer choice

and learning process, which is another cognitively simple alternative to the typical dynamic

programming solution to the exploration-exploitation trade-off and has been shown to be a

behavioral plausible framework to model consumer behavior [Schulz et al., 2019, Ding et al.,

2022]. Our work differs from this stream of literature as we consider a setting where users

learn their preferences, rather than the product attributes. We further demonstrate how the

increased flexibility offered by the Thompson Sampling approach can help researchers study

settings with high-dimensional learning and establish information-theoretic regret bounds.

Fourth, our work relates to the vast literature on adaptive learning and multi-armed

bandits. Prior research in this domain has offered a variety of algorithms to use [Lattimore

and Szepesvári, 2020]. Although Thompson sampling has been around since the work by

Thompson [1933], it has only recently gained traction after providing a remarkable empirical

performance better than state-of-the-art benchmarks [Chapelle and Li, 2011]. Since then,

many researchers have attempted to provide theoretical guarantees on Thompson sampling for

a variety of adaptive learning problems [Agrawal and Goyal, 2012, 2013, Russo and Van Roy,

2014, 2016]. For a comprehensive review of Thompson sampling, please see Russo et al. [2018].

In marketing, a growing body of research explores the applications of Thompson Sampling

across various domains [Schwartz et al., 2017, Jain et al., 2024, Ye et al., 2024, Waisman

et al., 2025]. Most of the literature in this domain focuses on a single learner that optimizes

the action and updates parameters upon experience. Our work extends this single-agent

framework to a setting with both a learning recommendation system and an agent, offering

new insights for modeling general principal-agent problems in contexts with decision-making

under uncertainty. We offer theoretical regret bounds for different users based on their level

of dependence on the algorithm.

3 Modeling Framework

We consider a general principal-agent model, where the principal is a platform that designs

a Recommendation System (RS) that offers personalized product recommendations and

the agent is a user of the platform who wants to consume products on the platform. The

products available are experience products, meaning that only a subset of their features

are available prior to consumption, while other features are only realized after consumption

[Nelson, 1970, Villas-Boas, 2006]. There are numerous examples of such contexts, including

movie recommendations, news personalization, and content recommendation on social media
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Figure 1: Illustration of search and experience features

apps. In this section, we first characterize the user’s utility model in §3.1 and then describe

users’ preference learning in §3.2. In §3.3, we discuss the user’s choice in two different regimes

with and without the personalized RS.

3.1 Users’ Utility Model

We propose a general utility framework in which user i derives utility from selecting product

(action) Aj from the product (action) set A. In this context, each action corresponds to

consuming a distinct experience product, represented by a d-dimensional set of attributes,

i.e., A ⊂ Rd. Following the literature on experience goods [Nelson, 1970], we categorize

the product features into two types: (1) search features, which are attributes known before

consumption (e.g., a movie’s runtime, genre), and (2) experience features, which are realized

only after consumption (e.g., the presence of a surprise ending). For convenience, we denote

the first s features as search features and the remaining d− s features as experience features.

Figure 1 illustrates the distinction between these two feature types. We denote user i’s

utility from consuming product Aj by ui(Aj) and characterize it by a user-specific vector of

preferences θi ∈ Rd in a linear specification as follows:

ui(Aj) = θTi Aj + ϵi,j, (1)

where ϵi,j is the error term, drawn from a normal distribution with mean zero and known

variance σ2
ϵ . Although we assume linearity for theoretical simplicity, this assumption is not

overly restrictive, as a rich set of features could be used to approximate user utility in a

linear manner. To account for the distinction between search and experience features, we

decompose utility as follows:

ui(Aj) =
s∑

k=1

θi,kAk,j︸ ︷︷ ︸
utility from search features

+
d∑

l=s+1

θi,lAl,j︸ ︷︷ ︸
utility from experience features

+ϵi,j, (2)
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where the utility from search features is the part available to the user prior to consumption,

but the utility from the experience features is only realized after consumption.

3.2 Users’ Preference Learning

In high-dimensional settings with numerous product features, users are likely to experience

some degree of uncertainty about their preference parameters [Branco et al., 2016, Yao

et al., 2022]. This uncertainty becomes particularly pronounced when new product features

are continually introduced, as users may be unfamiliar with these features and, therefore,

uncertain about their importance [Lee et al., 2024]. In such cases, users gradually resolve their

uncertainty by consuming products and learning their preferences over time. For instance,

a movie viewer may be unsure about their preference for a specific sub-genre or a distinct

visual style (e.g., the aesthetics of a Wes Anderson film) and develop a clearer understanding

by watching multiple films within that category. Similarly, in the context of food, a user who

has never tried a particular ingredient may initially be uncertain about their preference for it

but gradually learn it through experience.

In this section, we extend our framework to sequential settings where users learn their

preference parameters through sequential consumption of products. We adopt an information-

theoretic approach that accommodates any level of uncertainty in users’ preferences. A

key advantage of this flexible characterization is that it encompasses the classical economic

assumption of fully known preferences as a special case while also capturing more general

scenarios where users face uncertainty about their preferences.

Let t denote each time period and Ai,t the product chosen by user i in period t. For

notational brevity, we define Ui,t = ui(Ai,t) and let Hi,t denote the history (sequence)

of products (actions) consumed and utility outcomes up until period t, that is, Hi,t =

(Ai,1, Ui,1, Ai,2, Ui,2, . . . , Ai,t, Ui,t). We assume θi is drawn from a Normal distributionN(µi,0,Σi,0).

The user starts with a prior θ̃i,0 ∼ N(µi,0,Σi,0) and updates the preference parameters at the

end of each time period t given the prior sequence Hi,t according to the following rule:

µi,t = E[θi | Hi,t] (3)

Σi,t = E
[
(θi − µi,t)(θi − µi,t)

T | Hi,t

]
(4)

The sequential nature of learning indicates that users update their parameters in every time

period in a Bayesian fashion. Given the Normal prior, we can apply the Bayes rule for linear

Gaussian systems and present the user’s parameter updating from µi,t and Σi,t to µi,t+1 and

Σi,t+1 in Algorithm 1 (please see the analytical derivations of posterior mean and variance in
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Web Appendix A). Algorithm 1 determines user learning given any consumption sequence

Hi,t. As such, for any given prior, we can examine how different consumption sequences can

result in different levels of learning.

Algorithm 1 Bayesian Updating
Input: µi,t,Σi,t, Ai,t, Ui,t

Output: µi,t+1,Σi,t+1

1: Σi,t+1 ←
(
Σ−1

i,t + 1
σ2
ϵ
Ai,tA

T
i,t

)−1

2: µi,t+1 ← Σi,t+1

(
Σ−1

i,t µi,t +
1
σ2
ϵ
Ai,tUi,t

)
In summary, it is important to emphasize that the presence of uncertainty does not

imply that users have entirely uninformative priors. For instance, a user may already have

a reasonably well-calibrated belief about their enjoyment of a new visual style in movies

or a certain ingredient in food. Further, it is worth noting that our learning procedure is

somewhat different from the typical approach in the Bayesian learning literature in marketing

and economics where consumers learn about product attributes [Erdem and Keane, 1996].

However, although preference learning may appear different from attribute learning, “the

two are equivalent as long as one assumes that the utility function is linear in attributes and

preference weights” (see footnote 35 in Ching et al. [2013]). Therefore, one could find an

equivalence result between our analysis and one with attribute learning.

3.3 User Choice

We now discuss the user’s decision-making process that determines the consumption sequence

Hi,t. To do so, we need to characterize the choice architecture in each period. For any

product set A = {A(1), A(2), · · · , A(K)}, we consider the following choice architecture when

the recommendation system is available:

A(p)︸︷︷︸
recommended

, A(1), A(2), · · · , A(K)︸ ︷︷ ︸
not recommended

,

where one product from the set is recommended and the rest of the products are not

recommended.2 We now characterize the user’s decision-making process in the definition

below:

2Having only one recommended action is only for simplicity and one could easily extend the framework
to cases with multiple recommended actions.
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Definition 1. Let Ii,t denote all the information available to user i at time t. The user’s

decision-making process is characterized by the policy π(· | Ii,t), which is a probability

distribution over products conditional on the information and products available.

To isolate the impact of personalized algorithms on users, we consider two types of users:

(1) self-exploring user, who makes decisions on their own without the personalized RS, and

(2) RS-dependent user who follows the personalized recommendation in every time period.3

In what follows, we first characterize the self-exploring user’s choice in §3.3.1, and then

present how the RS provides personalized recommendations and characterize the consumption

sequence for the RS-dependent users in §3.3.2.

3.3.1 Self-Exploring User

In the absence of the personalized recommendation, users make decisions on their own. Given

the utility framework in Equation (1), a forward-looking utility-maximizing user wants to

optimize the overall utility over T periods. This naturally motivates users to learn their

preference parameters through experience and balance good decision-making with proper

exploration of their own preference parameters. We can define the objective function for a

forward-looking user as maximizing the discounted expected utility stream as follows:

argmax
π

E

[
T∑
t=0

δtUi,t | µi,0,Σi,0, π

]
, (5)

where δ is the discount factor and the expectation is taken over the randomness in products

Ai,t and utilities Ui,t. Typical approaches to find the optimal sequence of choices by users

involve solving a dynamic programming problem, which is known to be an NP-hard problem.

The lack of cognitive simplicity of dynamic programming solutions has motivated researchers

to study the simpler heuristic-based strategies as the underlying learning process [Lin et al.,

2015, Tehrani and Ching, 2023].

We draw inspiration from this stream of literature and assume that users employ a

Thompson Sampling approach that is a simple and intuitive heuristic-based strategy consistent

with Bayesian learning [Thompson, 1933]. In addition, the prior literature has documented

Thompson Sampling algorithm’s behavioral plausibility as a framework to model consumer

choice and learning [Schulz et al., 2019, Mauersberger, 2022, Ding et al., 2022] and its excellent

3We choose this stylized approach and compare these two levels of dependence and independence to offer
critical and sharp insights into this problem in a tractable manner. However, as we later demonstrate in this
paper, our framework can also be used to examine outcomes under more hybrid user types.
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empirical performance in terms of welfare [Chapelle and Li, 2011].4

Thompson Sampling aims to find the right balance between exploration and exploitation

in the decision-making process. The algorithm starts by initializing the user’s prior belief

distribution about the preference weights N(µi,0,Σi,0). It then draws θ̃i,0 from this distribution

and computes the utility from search features for all possible products by plugging in θ̃i,0

for θi,0 in Equation (2). It is important to note that the user cannot use experience features

because those features are not available prior to consumption. In the next step, the algorithm

chooses the product that maximizes the estimated utility and observes the utility Ui,0 for

that instance. Finally, the algorithm applies Bayesian updating procedure in Algorithm 1

using the new instance and updates the posterior distribution of preference weights. The

Thompson Sampling algorithm continues this process for T periods.

Algorithm 2 Choice and Learning for the Self-Exploring User
Input: µi,0,Σi,0,A, T
Output: Hi,T , {µi,t,Σi,t}Tt=1

1: for t = 0→ T do
2: θ̃i,t ∼ N(µi,t,Σi,t) ▷ Sampling preference weights
3: Ai,t ← argmaxAj∈A

∑s
k=1 θ̃i,k,tAk,j ▷ Selecting action based on search features

4: Σi,t+1 ←
(
Σ−1

i,t + 1
σ2
ϵ
Ai,tA

T
i,t

)−1

▷ Updating posterior variance

5: µi,t+1 ← Σi,t+1

(
Σ−1

i,t µi,t +
1
σ2
ϵ
Ai,tUi,t

)
▷ Updating posterior mean

6: end for

Assuming that the self-exploring user uses Thompson Sampling has several key advantages.

First, it is a commonly used heuristic strategy for this dynamic problem, and early literature

has shown it to be nearly optimal [Chapelle and Li, 2011]. Second, it is computationally light,

making it advantageous in our later empirical analysis using the MovieLens data set. Third,

due to its simplicity, it is easy to incorporate it in cases where there is a recommendation

system present in the problem. We discuss this issue in the following section.

3.3.2 RS-Dependent User

We now focus on the user’s choice in the presence of the recommendation system. To do so,

we first introduce a personalized RS that aims to simplify the user’s decision-making problem.

Since we want to quantify the impact of the personalized RS on user-specific outcomes, we

4The prior literature has documented lower regret for Thompson Sampling compared to the alternatives
across several empirical domains.
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assume that the recommendation system’s objective is the same as that of the user.5 A

natural difference between the personalized RS and a single user is the fact that the system

has access to the data of all other users. To understand how the recommendation system’s

data advantage manifests itself in better decision-making capabilities, we first introduce some

notations. Let Θ[d×N ] denote the matrix of preference weights for a group of N users, i.e.,

Θ[d×N ] = [θ1 | θ2 | . . . | θN ]. In all major platforms, N is a very large number. Similarly,

let A[d×J ] denote the matrix of attributes for all J products (J = |A|) where each column

represents the vector of attributes for a product. We can define the matrix analog of the

user’s utility in Equation 1 as follows:

U = ΘTA+ E, (6)

where UN×J represent the utility for each pair of user and product and EN×J is a matrix

of i.i.d error term drawn from a mean-zero Normal distribution with variance σ2
ϵ . The

recommendation system has access to Uobs
N×J , which is an incomplete realization of matrix U

as each user reveals utility for a subset of items. The main question is how the data from

other users Uobs
N×J help the personalized algorithm learn about the new user i with vector of

preferences θi.

In principle, if the prior data from users do not inform us about the new user, the

recommendation system’s strategy will be the same as the self-exploring user, presumably

with a less informed prior because users know more about their own preferences than the

RS. However, the prior empirical work on personalized recommendation systems suggests

otherwise as it documents extensive similarities in user preferences [Koren et al., 2021]. The

most common approach to characterize the similarities in user preferences is to use a factor

model, which suggests that the matrix ΘTA can be factorized into two low-rank matrices. In

particular, we make the following low-rank assumption:

Assumption 1. The expected utility matrix ΘTA can be decomposed as follows:

ΘT
[d×N ]A[d×J ] = ΓT

[r×N ]F[r×J ], (7)

where F[r×J ] = [F1 | F2 | . . . | FJ ] is the matrix of product-specific factors for all J products,

5It is worth emphasizing that the only reason we make this assumption is to ensure that the impact of
the recommendation system is not driven by the misalignment in objectives. It is generally easy to show that
in cases where the objectives are misaligned, the extent of harm by the recommendation system will be larger
[Kleinberg et al., 2022]. In that sense, our results will provide a lower bound for the negative impact caused
by the RS.

14



User advantage by 
having more informed 

priors

User disadvantage 
by not observing 

experience features

RS advantage in more
efficient learning if 

𝑟 < 𝑠

RS advantage by 
capturing the information 

in experience features

Figure 2: Comparison of information advantage by the RS and users

and Γ[r×N ] = [γ1 | γ2 | . . . | γN ] presents the matrix of user-specific factor weights for all N

users.

We can now view the recommendation system’s data advantage in light of Assumption 1.

Because the recommendation system has other users’ prior data, it has access to an accurate

estimate of the product-specific matrix F , which captures not only search features, but also

experience features. As such, the recommendation system’s task of learning user i’s preference

parameters will turn into the task of learning user i’s weights for r-dimensional products

because we have: θTi Aj = γT
i Fj. Hence, the recommendation system’s data advantage

manifests in two ways: (1) learning r-dimensional weights as opposed to the self-exploring

user’s learning of d parameters, and (2) access to a low-rank embedding of product space that

contains both search and experience features. Figure 2 compares the information advantage

of the RS and users, emphasizing the potential for users to have more informed priors. These

insights are essential for establishing theoretical guarantees for different algorithms.

Before presenting the procedure that determines choice and learning for the RS-dependent

user, we make the following assumption about the user’s learning:

Assumption 2. The only channel through which users learn their preferences is consumption.

This assumption is inspired by the fact that users do not observe experience features

without consuming the product. A direct implication of this assumption is that the RS-

dependent user cannot learn from the recommendations beyond their own experience. In our

context, this assumption is reasonable as recommendation systems are often very complex

and it is not realistic to assume that users can learn further by observing that a product is

recommended.6

6Prior work has proposed clever approaches to allow for consumer inference from the recommendation
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We now present the choice and learning processes for the RS-dependent user in Algorithm

3. In this setting, not only is there a user who learns her preference parameters through

experience, there is also a recommendation system that learns user preferences and offers

recommendations. Both players learn user i’s preference parameters, but they operate in

different spaces: user i learns her own parameters θi in the d-dimensional space, whereas the

recommendation system learns user i’s preference weights for factors in the r-dimensional

space. To distinguish between these two learning processes, we use superscripts (θ) and (γ)

to refer to the parameters of both players’ prior distributions: µ
(θ)
i,0 , Σ

(θ)
i,0 , µ

(γ)
i,0 , and Σ

(γ)
i,0 .

The RS moves first in each time period. Since the recommendation system has access to

F , it only wants to learn γi. As such, it engages in a Linear-Gaussian Thompson Sampling

procedure, where it first draws γ̃i,t from the posterior distribution and then recommends the

product with the highest expected utility (lines 2 and 3). The RS-dependent user always

follows the recommended action (line 4). Once the utility is realized, both the user and

recommendation system update parameters of their posterior distribution µ
(θ)
i,t+1, Σ

(θ)
i,t+1, µ

(γ)
i,t+1,

and Σ
(γ)
i,t+1. The algorithm repeats this process for T periods.

Algorithm 3 Choice and Learning for the RS-Dependent User

Input: µ
(θ)
i,0 ,Σ

(θ)
i,0 , µ

(γ)
i,0 ,Σ

(γ)
i,0 , F,A, T

Output: Hi,T , {µ(θ)
i,t ,Σ

(θ)
i,t }Tt=1, {µ

(γ)
i,t ,Σ

(γ)
i,t }Tt=1

1: for t = 0→ T do
2: γ̃i,t ∼ N(µ

(γ)
i,t ,Σ

(γ)
i,t ) ▷ RS: Sampling low-dimensional weights

3: j∗ ← argmaxj
∑r

k=1 γ̃i,k,tFk,j ▷ RS: Selecting recommendation
4: Ai,t ← Aj∗ ▷ User: Following recommendation

5: Σ
(θ)
i,t+1 ←

((
Σ

(θ)
i,t

)−1

+ 1
σ2
ϵ
Ai,tA

T
i,t

)−1

▷ User: Updating posterior variance

6: µ
(θ)
i,t+1 ← Σ

(θ)
i,t+1

((
Σ

(θ)
i,t

)−1

µ
(θ)
i,t + 1

σ2
ϵ
Ai,tUi,t

)
▷ User: Updating posterior mean

7: Σ
(γ)
i,t+1 ←

((
Σ

(γ)
i,t

)−1

+ 1
σ2
ϵ
Fj∗F

T
j∗

)−1

▷ RS: Updating posterior variance

8: µ
(γ)
i,t+1 ← Σ

(γ)
i,t+1

((
Σ

(γ)
i,t

)−1

µ
(γ)
i,t + 1

σ2
ϵ
Fj∗Ui,t

)
▷ RS: Updating posterior mean

9: end for

Lastly, an important point about the RS-dependent user is that the preference learning

information [Shin and Yu, 2021]. As far as user’s choice is concerned, the RS-dependent user in our context
infers the superiority of RS by definition and always follows that. As for preference learning, one could relax
Assumption 2 by allowing the user to solve a system of inequalities that indicate the recommended product is
better than other products and learn about only search features of each product. However, this approach
would be computationally intractable and cognitively complex for users.
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process is the same for both user types. As such, any difference in the final learning outcomes

comes from the consumption sequence. We utilize this fact when we examine the learning

implications of RS-dependence in our empirical framework in §5.3.

4 Theoretical Analysis

In this section, we theoretically examine the algorithms described earlier. We begin by

defining our primary outcomes of interest in §4.1. We then present the regret bounds for

self-exploring users who follow Algorithm 2 in §4.2. Next, in §4.4, we present the regret

bounds for RS-dependent users who follow Algorithm 3. Finally, in §4.4, we theoretically

compare the two regret bounds, establish bounds for welfare gains from RS dependence and

examine the possibility of rational dependence.

4.1 Main Outcomes

As discussed earlier, we are interested in two key user-level outcomes: welfare and learning.

In this section, we define these two key outcomes and formally present the measures we use

for them. We can define user welfare for user i for T periods as the total sum of utility from

actions chosen under policy π as follows:

Welfarei(T ; π) = E

[
T∑
t=0

ui(Ai,t)

]
, (8)

where Welfarei is a user-specific function that depends on user i’s preference parameters θi.
7

Another closely tied measure that is often studied in the literature on sequential decision-

making and linear bandits is expected regret, which takes the difference between the expected

utility from some notion of first-best in each period and user welfare. We formally define

expected regret as follows:

Definition 2. Suppose that A∗
i ∈ argmaxa∈A E[ui(a) | θi] is the optimal action (product)

given θi. For the sequence of actions {Ai,t}Tt=0 chosen according to policy π, the expected

regret is given as follows:

Regreti(T ; π) = E

[
T∑
t=0

(ui(A
∗
i )− ui(Ai,t))

]
, (9)

where the expectation is taken over the randomness in the actions, utilities, and the prior

distribution over θi.

7It is worth noting that we set the discount factor δ to one as we consider a finite horizon problem.
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This notion of expected regret is often referred to as the Bayes regret or Bayes risk.

Consistent with the prior bandits literature, one advantage of using regret instead of welfare

is the possibility of obtaining statistical bounds. We later use these bounds to conduct a

theoretical analysis of our problem.

The second outcome we are interested in is user learning. Intuitively, the greater uncer-

tainty the user has over her own preference parameters, the lower the degree of learning by

the user. As such, we turn to the well-established concept of Shannon entropy that measures

the amount of uncertainty or surprise in random variables [Shannon, 1948].

Definition 3. Let A∗
i,t denote the random variable corresponding to the optimal action

(product) given the prior sequence Hi,t−1. We measure a user’s preference learning based on

the Shannon entropy of A∗
i,t, which is defined as follows:

H(A∗
i,t) = −

|A|∑
k=1

P (A∗
i = Ak | Hi,t−1) log (P (A∗

i = Ak | Hi,t−1)) . (10)

According to this definition, a higher entropy means that the user is more uncertain as

to what the optimal action is. For example, if the user deterministically chooses one action

(maximum certainty and learning), the Shannon entropy of the optimal action will be equal

to zero, i.e., H(Ai,t) = 0. On the other hand, when the user is maximally uncertain between

actions, each action has an equal probability, and the Shannon entropy of optimal action will

take its maximum value H(Ai,t) = log(|A|).
A key challenge in using Shannon entropy as the primary measure of learning is that it is

not directly comparable to regret, which serves as the main measure of welfare. To address

this, we introduce the concept of counterfactual regret—the regret a user would incur at any

given time period if they were to make decisions independently, without the influence of

the personalized recommendation system. This measure allows us to capture the trade-off

between welfare and learning: if lower regret actions come at the expense of user learning,

we expect counterfactual regret to be high for that user. We formally define the expected

counterfactual regret as follows:

Definition 4. Let Ãi,t denote the counterfactual action (product), which is the random

variable corresponding to the optimal action (product) given the prior sequence Hi,t−1. This is

the optimal action the user would choose based on her past learning through experience if the

personalized algorithm was not available at period t only. For the sequence of counterfactual

actions {Ãi,t}Tt=0 that would have been chosen in each period under π in the absence of RS,
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the expected counterfactual regret is given as follows:

CounterfactualRegret = E

[
T∑
t=0

(
ui(A

∗
i )− ui(Ãi,t)

)]
, (11)

where the expectation is taken over the randomness in the actions, utilities, and the prior

distribution over θi.

The main benefit of using the notion of counterfactual regret is its direct comparability

with the actual regret. In cases where users follow the personalized algorithms to choose the

product, we expect the counterfactual product they would choose without the personalized

algorithm to be different from the one offered by the algorithm. As such, there will be a

discrepancy between the counterfactual regret and the actual regret. The gap between the

two highlights the loss in independent decision-making ability due to RS-dependence.

4.2 Regret Bounds for Self-Exploring Users

We start by deriving the regret bounds for the self-exploring user. As shown in Algorithm

2, the user starts with a prior distribution N(µi,0,Σi,0) and samples from the prior to select

the product and then updates the posterior distribution based on the realized utility. The

user repeats the procedure until convergence to the first-best action (product), which is

the best product identifiable by the user. We denote the first-best for the self-exploring

user by A∗,s
i and define it as the product with the highest utility from search features if the

preference parameters are known, that is, A∗,s
i ∈ argmaxAj∈A

∑s
k=1 θi,kAk,j. As such, the

first-best identifiable by the self-exploring user is different from the first-best A∗
i in the regret

equation (Definition 2), which allows us to write the following decomposition:

Regreti(T ; π) = E

[
T∑
t=0

(ui(A
∗
i )− ui(Ai,t))

]

= E

[
T∑
t=0

(ui(A
∗
i )− ui(A

∗,s
i ))

]
+ E

[
T∑
t=0

(ui(A
∗,s
i )− ui(Ai,t))

] (12)

where the first element in the equation above is a summation over a constant gap between

the expected utility from the two first-bests, and the second term is another notion of regret

for the self-exploring user. Specifically, we can show that the second term is the same as the

linear bandit regret with an s-dimensional vector of preference weights, which allows us to

use information-theoretic regret bounds for linear banidts established in the prior literature
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[Russo and Van Roy, 2016].8 We use this insight to arrive at the following proposition:

Proposition 1. Let πSE denote the policy for the self-exploring user who follows the Thompson

Sampling algorithm for choice and learning as in Algorithm 2. Further, let g denote the gap

in expected utility between the first-best action and the first-best action based on only search

features, that is, g = E [ui(A
∗
i )− ui(A

∗,s
i )]. The regret bound for this user is as follows:

gT ≤ Regreti(T ; πSE) ≤ gT +
√

2(σ2
ϵ + σ2

x)sH(A∗
i,0)T , (13)

where H(A∗
i,0) is the Shannon entropy of the prior distribution of optimal action for self-

exploring user, defined at period 0, σ2
x is the variance of the utility that comes from experience

features, and s is the dimensionality of the search features.

Proof. Please see Web Appendix C.3.1.

As shown in this proposition, both lower and upper bounds contain a term linear in T .

The upper bound further includes an information-theoretic bound, which is closely related to

the one established in Russo and Van Roy [2016]. The lower bound happens in the event

where the user has no uncertainty about the preferences (i.e., H(A∗
i,0) = 0).

Next, we examine the gap g, which is defined as the difference between the first-best and

the first-best based on only search features. Since this gap appears in the regret lower bound,

it is crucial to understand how large of a magnitude it has and the theoretical conditions

under which this term converges to zero. To do so, we need to introduce new notations:

let U s
i,j and Ux

i,j denote the utility the user derives from the search features and experience

features, respectively. We can write the following proposition to characterize the lower bound

for the gap g:

Proposition 2. Suppose that the search utility and experience utility across products are

Normally distributed, such that U s
i,j ∼ N(µi,s, σ

2
i,s) and Ux

i,j ∼ N(µi,x, σ
2
i,x). If search utility

and experience utility are independent across products, the expected gap between the first-best

and first-best based on the search features has the following lower bound:

E [ui(A
∗
i )− ui(A

∗,s
i )] ≥

√
2 log(|A|)

(√σ2
i,s + σ2

i,x − σi,s

)
−O


√

σ2
i,s + σ2

i,x

log(|A|)

 (14)

8We present the preliminaries from information theory and important lemmas from this paper in Web
Appendix B.
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Proof. Please see Web Appendix C.3.2.

As shown in Proposition 2, the gap depends on the variance of the utility from experience

features and the number of products available. In particular, the gap grows as the experience

features play a larger role in determining a user’s utility. Further, as the action space grows,

the term O
(√

σ2
i,s + σ2

i,x/log(|A|)
)
converges to zero, which suggests a substantially higher

gap when the action space is larger.

4.3 Regret Bounds for RS-Dependent Users

We now turn to establishing regret bounds for the RS-dependent user. The regret analysis for

the RS-dependent users is a bit more subtle. In this case, the user follows the recommendation

from the personalized RS. As such, we need to find the regret bound for the RS. One could

view the RS-dependent algorithm as a Thompson Sampling algorithm that operates in

an r-dimensional environment, as it has access to factor information. Under Assumption

1, the first-best action that the RS could obtain is the same as the first-best action in

Definition 2. Therefore, the proposition below characterizes the following regret bound for

the RS-dependent user:

Proposition 3. Let πRS denote the policy for the RS-dependent user who consistently follows

the personalized recommendations. Further, let H(ARS
i,0 ) denote the Shannon entropy of

the prior distribution of optimal action for the personalized RS. The regret bound for the

RS-dependent user is as follows:

Regret(T ; πRS) ≤
√

2σ2
ϵ rH(ARS

i,0 )T , (15)

where r is the number of factors. The expected regret for the RS-dependent user is equal to

the expected regret for the personalized RS.

Proof. Please see Web Appendix C.3.3.

As shown in Proposition 3, the regret bound for the RS-dependent user does not depend

on the dimensionality of the feature space but on the rank r. In many practical settings, r is

much smaller than the dimensionality of the feature space (d) or search features (s) [Udell

and Townsend, 2019]. On the other hand, the main challenge for the RS is the initial lack of

information about user preferences. In the extreme case, one could assume that the algorithm

has an uninformative prior such that the prior distribution of optimal action gives all actions

the same probability, which makes the Shannon entropy of the prior distribution of optimal
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action equal to log(|A|). However, modern RS algorithms try to overcome the cold-start

problem by better exploring the side information about the user [Farias and Li, 2019]. Our

information-theoretic bound accommodates these realistic scenarios where RS algorithms

have a prior better than a random guess.

4.4 Welfare Gains from RS Dependence

As highlighted earlier, both the user and the RS have some information advantages. The

regret bounds in Propositions 1 and 3 illustrate their dependence on factors associated with

each type of information advantage and disadvantage, as depicted in Figure 2. On the one

hand, the platform’s algorithm benefits from access to data from other users, enabling it to

efficiently identify the actual first-best in contrast to the self-exploring user, who can only

determine the first-best based on search features. On the other hand, in certain scenarios,

users may have greater knowledge of their own parameters than the algorithm, resulting in

a very small Shannon entropy of the prior distribution of the optimal action (H(A∗
i,0) ≈ 0),

which is substantially lower than that of the RS-dependent user (H(A∗
i,0)≪ H(ARS

i,0 )).

Our goal in this section is to compare the regret bounds for self-exploring and RS-

dependent algorithms established earlier. Combining the lower bound for the self-exploring

user’s regret with the upper bound for the RS-dependent user’s regret, we arrive at the

following corollary:

Corollary 1. The difference in regret between self-exploring users and RS-dependent users

has a lower bound given by:

Regret(T ; πSE)− Regret(T ; πRS) ≥ gT −
√

2σ2
ϵ rH(ARS

i,0 )T (16)

A few key insights emerge from Corollary 1. First, the difference in Equation (16) directly

corresponds to the welfare gain from following the RS, as the first-best terms in both regret

values cancel out. Second, we observe that the positive term grows linearly in T , while the

negative term grows sub-linearly. This implies that with a nonzero gap g, the welfare gain

from following the RS increases linearly over time. Figure 3 highlights the region where

the lower bound for welfare gain in Equation (16) is positive for different numbers of time

periods, gap values and a set of initial parameter, in an instance where the error variance

and rank parameters are calibrated based on the prior work on movie recommendations

(σϵ = 0.5 and r = 40), and the Shannon entropy of the prior is fully uninformative, that is,

H(ARS
i,0 ) = log(|A|). As shown in this figure, despite the algorithm’s uninformative prior and

the user’s full certainty about their preferences, the region where the lower bound for the
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Figure 3: Region with a guaranteed welfare gain from RS dependence across model parameters

welfare gain is positive expands rapidly as the number of time periods grows, making even

a small gap sufficient to make RS dependence a more utility-maximizing choice than the

self-exploring alternative.

Together, our results highlight the welfare gains from the personalized algorithm created

solely through its information advantage. We specifically abstract away from users’ preference

uncertainty and search costs to isolate the welfare gain offered by the RS purely due to its

information advantage through access to other users’ data. If we account for users’ preference

uncertainty, the region with a positive lower bound for welfare gain from the personalized

RS expands, as the user must incur some exploration cost. Likewise, if the user incurs a

search cost while exploring products, the illustrated region in Figure 3 will shift downward

on the y-axis. Isolating the information advantage channel is important, as it suggests that

even in the absence of search costs or preference uncertainty, users will rationally develop a

dependence on the recommendation system (RS).

5 Empirical Framework

In this section, we first provide a broader discussion of our theoretical analysis to identify

key empirical questions that warrant further investigation. As established in Corollary

1, the welfare benefits of RS tend to outweigh its downsides as the number of periods T

increases. However, in real-world settings, users do not engage with the system for an infinite

number of periods. As a result, self-exploring users may achieve better welfare outcomes

within finite periods when (1) the gap g is small, and/or (2) the RS initially provides poor

recommendations and requires time to stabilize. The latter scenario is more likely if the
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effective rank r is high or if the RS starts with an uninformative prior. Therefore, assessing

the net welfare impact of RS dependence in finite samples remains an empirical question,

contingent on the actual values of g and r.

Second, another key outcome of interest in our study is learning. In particular, we want to

know how following RS influences users’ preference learning and independent decision-making

ability, measured by counterfactual regret. In principle, if the personalized recommendations

create enough variation in products to learn preference parameters, we do not expect it

to affect user learning. We know that the algorithm needs to explore in the beginning,

which naturally creates some variation in product features consumed. However, comparing

the upper bounds in Propositions 1 and 3, we know that the RS scales the regret in the

order of
√

r/s-fraction of the self-exploring user if they start from the same prior, that

is, H(A∗
i,0) = H(ARS

i,0 ). As such, the RS algorithm is likely to reach the exploitation stage

quickly, potentially limiting the extent of exploration necessary for effective user learning.

Specifically, if the exploitation phase primarily recommends a narrow set of products, users

may experience insufficient variation to fully learn their preferences. Importantly, whether or

not the exploitation stage of the algorithm generates enough variation for user learning largely

depends on the distribution of user preferences and, therefore, is an empirical question.

In our empirical framework, we aim to examine the finite-sample properties of self-

exploring and RS-dependent algorithms in terms of both welfare and learning measures.

To accomplish these objectives, we require an empirical setting that meets the following

criteria: (1) availability of preference data on user-product pairs, (2) access to a rich set of

search features for products that allow us to estimate user preferences and simulate different

learning patterns under various algorithms, and (3) the ability to integrate a state-of-the-

art personalized recommendation system capable of learning complex user preferences and

providing relevant recommendations.

To meet these three criteria, we utilize the MovieLens 1M dataset.9 The MovieLens

dataset includes over one million user ratings from 6,040 distinct users on 3,706 unique

movies, which serve as our measure of user preferences. Beyond ratings, the dataset provides

detailed information about the movies, including genres, themes, and an extensive collection

of tags associated with each movie, which we leverage as the set of search features. Lastly,

the MovieLens dataset has been widely used as a benchmark for research on personalized

recommendation systems, ensuring that we can integrate state-of-the-art recommendation

9This dataset is publicly available and can be accessed at https://grouplens.org/datasets/

movielens/1m/.
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algorithms into our empirical framework.

In this section, we begin by outlining our empirical strategy in §5.1. We then analyze

the welfare gains derived from the personalized RS due to its information advantage in §5.2.
Next, in §5.3, we investigate the learning outcomes for self-exploring and RS-dependent users.

Finally, in §5.4, we explore the policy implications and identify potential strategies that

balance the trade-off between welfare and learning objectives.

5.1 Empirical Strategy

In order to satisfactorily answer the empirical questions, we face several challenges. Before

discussing these challenges in great detail, we need to state a few assumptions upfront. The

first assumption we make is about the relationship between ratings and user utility. While

our theoretical framework uses the concept of user utility, we only observe user ratings. Let

Y[N×J ] denote the rating matrix for N users and J movies. We present our assumption that

links ratings to utility as follows:

Assumption 3. User i’s utility from watching movie j is well-approximated by user ratings,

i.e., U[N×J ] ≈ Y[N×J ].

Our next assumption pertains to the set of available search features. Since our data

contain detailed movie tags, we use these tags as the primary search features for each movie.

These tags include attributes such as originality, great ending, and good soundtrack–features

that are visible to users before consumption, as they appear in the movie profile on the

website (for a complete list of movie tags, see Web Appendix D.1). Naturally, one could use

all tags to characterize the dimensionality of user preferences. However, it is reasonable to

assume that only a subset of these tags are important for user utility. Specifically, we assume

that the top k most frequently used tags capture the search features. In our analysis, we set

k = 50 and formalize this assumption as follows:

Assumption 4. The matrix of a movie’s search features is defined as A[51×J ] = [A1 | A2 |
· · · | AJ ], where Aj represents features of movie j in terms of the aggregated rating and top

50 tags selected from the data.

We emphasize that the choice of k is flexible. While we use k = 50 for our main analysis

for modeling reasons, all qualitative insights hold for other characterizations. The final

assumption we make is the following about the stability of true user preferences:

Assumption 5. For any user i, the true user vector of preferences is represented as θi for

all time periods, independent of the movies watched.
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It is important to note that, in our setting, the user can still learn their preferences

through experience. While the actual preferences remain stable, the user’s belief about these

preferences can evolve over time. With all the assumptions clearly defined, we discuss these

challenges along with their corresponding empirical strategy in the following sections.

5.1.1 Data Sparsity

For each user in our data, we only observe ratings for a subset of products, which makes it

challenging to estimate user-level parameters θi. To overcome this challenge, we select a test

sample of 400 users who have rated over 420 movies. Having a rich set of ratings for a user

allows us to estimate parameters at the individual-level, by simply regressing the outcomes

on movie features. As stated in Assumption 4, we use 51 features in our analysis that contain

search features that users could see on the TMDB website, including the aggregated rating

for each movie as well as 50 other tag information.10

5.1.2 Model-free Regret Measurement

Empirically measuring regret for algorithms different from the one used in the data is

fundamentally challenging. One approach is to impute ratings for unrated movies, but this

requires highly accurate model-based estimates and risks information leakage between the

imputation model and the algorithms being evaluated. Alternatively, restricting analysis

to the set of movies each user has already rated avoids this issue but limits the ability of

algorithms to identify strong recommendations outside the observed choices. Moreover, the

movie recommendation setting differs slightly from the theoretical framework, where the

action set A is fixed. In reality, once content is consumed, users may not derive the same

utility from repeated consumption. This makes the set of available products for each policy

different, making an apples-to-apples comparison between algorithms impossible.

To address these challenges, we randomly select a hold-out set of 20 movies for each

user in our test set, ensuring that these movies have been rated by the user so that we

have access to the actual outcomes and the first-best option among them. We then exclude

these 20 movies from the user’s training set, preventing the algorithm from accessing any

information about the user’s ratings for these movies. Notably, while the hold-out set remains

fixed for each user, it varies across users in our test data. This setup allows us to train any

algorithm without the 20 hold-out movies and evaluate its regret and counterfactual regret in

a model-free manner by directly using the user’s observed ratings for these hold-out movies.

10We only use 50 features to facilitate the OLS estimation of parameters at the user level. As a robustness
check, we extend this to a richer set of features and more advanced learning algorithms. All qualitative
insights remain unchanged.
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5.1.3 Integrating the Personalized RS

To evaluate outcomes for RS-dependent users, we require a personalized RS that continuously

updates its recommendations as it acquires more information about each user. As such, this

has to be a personalized RS that can handle the cold-start problem. For each user i in the test

set, we use the existing data of 5040 other users in the training set and combine it with the

information about user i available at the beginning of each time period t. Following Cortes

[2018], we use a matrix factorization algorithm for our personalized recommendation system,

which is widely used in the industry. We then train this recommendation system and predict

ratings for a hold-out set of 20 movies. Based on these predictions, the RS recommends

the movie with the highest predicted rating, which the RS-dependent user subsequently

consumes.

5.2 Algorithm’s Information Advantage and Regret Performance

We now turn to examining the algorithm’s information advantage and the welfare gains from

following the RS. This empirical analysis complements the theoretical results from §4 by

using real data to assess the finite-sample performance of different algorithms. Specifically,

we aim to address two key questions: (1) how quickly the RS learns to make high-quality

recommendations on the hold-out set of 20 movies and (2) whether these recommendations

outperform those that users could identify based on observable search features. The first

question pertains to the efficiency of low-dimensional learning through the factor model,

while the second captures the inherent gap g—the difference between the first-best option

identified by the RS and the best choice the user could make based on their search features.

For each user in our test set, we use the actual sequence of ratings from the data for the

training set of movies, excluding the hold-out set. At each time period, our personalized

RS updates its parameters and generates new predictions for the hold-out movies. These

predictions allow us to evaluate the RS algorithm’s performance in terms of regret and

other relevant metrics. To contextualize the RS algorithm’s effectiveness, we compare its

performance against the following benchmarks:

• Aggregate Rating: This algorithm predicts ratings based on aggregated ratings (average

rating) for each user without leveraging specific movie features. This serves as a benchmark

as the personalized RS also starts from aggregated ratings and updates as more information

arrives. Given the absence of a learning mechanism in this benchmark, its performance

measures remain constant over time.

• User with Known Preferences: This algorithm predicts ratings using the user’s known
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Figure 4: The regret performance of different algorithms on the hold-out set

51-dimensional preference vector, which consists of a linear preference over the top 50 most

frequently mentioned tags and the aggregated rating. This preference vector is estimated

by regressing the user’s actual ratings for all watched movies on these 51 features. The

user’s preference is assumed to be fully known from the outset and remains constant over

time. This serves as the best performance achievable by a self-exploring user.11 Thus, any

gap between this algorithm and the personalized RS reflects the gap factor g characterized

in our theoretical analysis.

• User with Learning: This algorithm is similar to the previous one, with the key

difference being that the user learns according to Algorithm 1. Like the RS algorithm, we

use the actual sequence of ratings in the data and update the preference parameters for

search features over time. It starts from the prior, assigning weight one to the average

rating and zero weights to the remaining features, and updates as new ratings are observed.

The prior variance is set to be one for all preference parameters. At any time period,

the algorithm predicts ratings for all movies in the hold-out set based on their features,

allowing us to evaluate its performance.

Figure 4 displays the performance of all four algorithms over 400 periods, aggregated

across 100 simulations. Several key insights emerge from this figure. First, we observe that

the RS outperforms all three benchmarks in the hold-out test set, demonstrating its ability to

identify and leverage key patterns in user behavior. Second, there is a consistent gap between

the regret under RS and the User with Known Preferences, which highlights the intrinsic

11If the model specification is linear, this is the best-in-class model under Empirical Risk Minimization
principle. However, we relax this assumption and consider PCA-based features as a robustness check in Web
Appendix D.2.1 and arrive at qualitatively similar results.

28



Figure 5: Welfare gains from RS across nicheness of user preferences

information advantage of the RS and the gap between the first-best and the first-best based

on search features. Third, we see that the RS quickly outperforms the user with known

preferences, emphasizing its efficiency due to low-rank learning. This finding is particularly

important as we do not impose any specific rank assumption that forces r to be lower than

51; rather, the personalized RS algorithm identifies the rank in a data-driven manner. In

Web Appendix D.2.2, we use other performance metrics to demonstrate the performance of

RS compared to benchmarks.

Next, we examine the heterogeneity in welfare gains from the recommendation system (RS)

relative to the User with Learning, based on the nicheness of user preferences. We quantify

nicheness using the correlation between a user’s actual movie ratings and the aggregated

ratings in the training sample. Users are then categorized into five nicheness groups, with

the most niche group comprising the bottom 20% in terms of correlation with the aggregate

rating (details provided in Web Appendix D.2.3). Figure 5 visualizes the welfare gains from

RS across these groups. Interestingly, we observe an inverted U-shaped pattern: users with

moderately niche preferences experience the highest welfare gains from personalized RS. For

highly mainstream users, the marginal benefit of personalization is limited since aggregate

ratings already serve as strong predictors. On the other hand, for highly niche users, the RS

struggles to leverage data from other users effectively, as their preferences deviate significantly

from the majority. This pattern aligns with the fundamental mechanics of personalized

algorithms, which rely on identifying similarities in the joint space of users and products.

In summary, our findings highlight the information advantage of the personalized RS

algorithm, offering a rational explanation for why users become dependent on algorithms.

This is significant because prior literature has often cited factors such as time-inconsistent
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preferences and search costs to justify algorithmic dependence [Allcott et al., 2022, Ursu,

2018]. However, as our analysis suggests, there is a clear limitation for users in the context

of experience goods, which rationally forces them to rely on personalized RS, even absent

search costs or time-inconsistent preferences.

5.3 Implications for Users’ Preference Learning

As shown in our theoretical and empirical analysis so far, RS-dependence brings substantial

welfare gains for users, making it a rational strategy. However, this dependence also has

implications for users’ preference learning, as it alters the prior experience from which they

resolve uncertainty about their preferences. In this section, we explore the implications of

RS-dependence for users’ learning and their ability to make independent decisions without

the assistance of the RS.

We focus on the two user types studied in this paper: self-exploring users and RS-dependent

users. Unlike in §5.2, where we maintain the user’s consumption sequence, in this analysis,

we modify the sequence according to Algorithms 2 and 3 to examine how each algorithm

influences users’ preference learning. However, we still remain within the set of movies that

the user has actually rated in the data to avoid model-based evaluation. Specifically, for each

user, we only allow consumption of the movies that they have already watched, excluding the

hold-out set of 20 movies.

We start with a prior distribution of preferences that reflects the average taste, meaning

the user’s initial weight for the aggregated rating feature is set to one, while the weights

for all other features are set to zero. The prior variance for all preference parameters is

initialized at one. In each round, both self-exploring and RS-dependent users choose a movie

from the available set, consume it, realize the utility, and update their preference parameters

accordingly. We then measure the extent of learning by comparing the updated preferences

with the prior preferences. If the system is learning effectively, we expect to see a larger

difference between the updated preferences and the prior. To quantify this difference, we use

two key measures: (1) Kullback-Leibler (KL) divergence, which is commonly used to assess

the difference between two probability distributions and measures the divergence between

the posterior distribution at each point from the prior distribution, and (2) Root Mean

Square Error (RMSE), which calculates the square root of the average squared differences

between the mean preference parameters. These measures help evaluate how much the user

has learned over time.

Figure 6 illustrates the learning outcomes for both self-exploring and RS-dependent users,

measured using KL divergence and RMSE. As both figures demonstrate, the difference from
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(a) KL Divergence (b) RMSE

Figure 6: User learning under different algorithms

the prior increases at a faster rate for the self-exploring user compared to the RS-dependent

user. This suggests that the self-exploring user learns more efficiently over time. It is

important to note that in this analysis, both user types begin with the same prior preferences,

so the observed differences reflect the relative learning rates of the two approaches. We

further validate the robustness of these findings in Web Appendix D.2.4, where we consider

scenarios in which users begin with more informed priors. Across all cases, the self-exploring

user consistently exhibits greater learning. This suggests that actively exploring a diverse

range of movies accelerates preference learning, whereas the RS-dependent user, despite

benefiting from personalized recommendations, experiences a slower learning trajectory.

The finding in Figure 6 indeed highlights that following personalized recommendations

comes at the expense of the user’s ability to learn. To quantify the impact of this trade-off by

a metric comparable to welfare, we turn to the measure of counterfactual regret, as outlined

in Equation (11) and Definition 4. This measure allows us to assess how the RS algorithm

influences the user’s independent decision-making ability by comparing their performance

with different strategies. We consider three separate user types for this analysis:

• Self-Exploring User: This user chooses movies on their own and updates their prefer-

ences based on their realized utility.

• RS-Dependent User: This user relies on the personalized RS for their movie choices

and updates their preferences upon consuming the algorithm’s recommendations.

• RS-Dependent User Counterfactual: This user follows the personalized RS recom-

mendations in all prior periods, but in each period of the counterfactual evaluation, they

make their own choices (without the algorithm’s help).

If RS-dependence truly acts as a barrier to preference learning, we should observe that the
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RS-Dependent User Counterfactual experiences higher regret compared to the Self-Exploring

User and the RS-Dependent User. This would suggest that although RS-dependence provides

welfare gains by offering better recommendations, it limits the user’s ability to independently

make decisions, thereby hindering their learning.

The results presented in Figure 7 underscore the trade-off between the benefits of following

personalized recommendations and the cost in terms of independent decision-making ability.

As shown in the figure, the two lines for the RS-Dependent User and Self-Exploring User

resemble the results in Figure 4, but with the key difference that the sequence of consumed

movies has changed due to the different algorithms being applied. The red line, representing

counterfactual regret, illustrates the amount of regret an RS-Dependent User incurs when

making decisions independently (i.e., without relying on the personalized recommendation

system). This line shows a persistent gap between the expected regret (from following the

RS) and the counterfactual regret (from independent decision-making).

Figure 7: Comparison of regret and counterfactual regret for different algorithms

Importantly, the expected counterfactual regret for the RS-Dependent User is consistently

higher than the expected regret for the Self-Exploring User.12 This finding suggests that

although following personalized recommendations reduces expected regret, it comes at the

expense of users’ independent decision-making ability. This finding is important for several

reasons. First, it highlights the trade-off between welfare gains and learning ability. Second,

it raises concerns about dependency on personalized RS systems, particularly in contexts

where independent decision-making is critical (e.g., to avoid adversarial AI attacks or to

12It is worth clarifying that the counterfactual regret for the self-exploring user is the same as the expected
regret.
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maintain a high level of user autonomy). Thus, our analysis of learning outcomes emphasizes

the need to carefully balance the benefits of personalized algorithms with the potential risks

of over-dependence.

5.4 Policy Implications

Our findings from §5.2 and §5.3 reveal a trade-off between welfare and learning. This raises

the question: is it possible to design a policy that effectively balances these two objectives?

We explore a specific class of policies that introduce randomness into the availability

of the recommendation system. With this random availability, RS-dependent users are

required to make their own decisions during certain periods. This is expected to boost users’

preference learning while still maintaining some of the benefits provided by the personalized

RS. Specifically, we define these policies using a single parameter p, which controls the

probability that the recommendation system will be unavailable. When the personalized

recommendation system is available, the RS-dependent user follows the algorithm; when it

is unavailable, the user makes a decision independently based on her updated preferences.

Notably, when the personalized recommendation system is always available (i.e., p = 0),

the outcomes are consistent with those for the RS-dependent user. Conversely, when the

recommendation system is unavailable (i.e., p = 1), the outcomes align with those of the self-

exploring user. From a theoretical perspective, random availability policies can be interpreted

as a mixed strategy in which the user probabilistically alternates between following the RS

recommendations and making independent choices. Please see Web Appendix E for the

detailed description of the random availability algorithm.

As in §5.2 and §5.3, we measure both regret and counterfactual regret using the hold-out

set of 20 movies for each user. For each random availability policy, we adjust the order

of consumption according to the policy and assess its performance in terms of regret and

counterfactual regret on the hold-out set. Figure 8 presents the results of this analysis. The

figure clearly demonstrates the trade-off between regret and counterfactual regret, which is

closely related to the classic exploration-exploitation dilemma. We show the Pareto Frontier

for different random availability policies, where certain policies Pareto dominate the self-

exploring strategy, achieving both lower expected and counterfactual regret. This finding

suggests that random availability policies can provide superior alternatives to stringent data

protection and privacy policies that entirely prohibit personalized recommendation systems.

Importantly, our results show that the Pareto Frontier approaches the optimal levels of

expected regret achieved by the RS-dependent user. For instance, the policy with p = 0.3

achieves what can be considered the best of both worlds, by achieving counterfactual regret
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Figure 8: The regret and counterfactual regret performance of random availability policies

comparable to that of the self-exploring user while maintaining expected regret similar to

that of the RS-dependent user. These findings indicate that even relatively simple policies,

like random availability, can effectively balance the trade-off between welfare and learning.

This offers valuable implications for platforms and users aiming to self-regulate their use of

recommendation systems.

6 Discussion and Conclusion

Personalized recommendation systems have become a cornerstone of the digital ecosystem.

However, growing user dependence on these algorithms has raised concerns among consumer

protection advocates and regulators. In this work, we take an information-theoretic approach

to examine the foundations of algorithmic dependence and its implications for users’ preference

learning and independent decision-making—an increasingly critical issue given rising concerns

about adversarial AI. We develop a utility framework in which users consume experience

goods and sequentially learn their preferences, allowing us to analyze how personalized

algorithms influence the learning process. Our theoretical results establish regret bounds for

different user types based on their level of dependence on personalized recommendations.

We show that algorithmic dependence is rational, as the welfare gains from following the

personalized algorithm relative to self-exploration grow linearly over time. To complement our

theoretical findings, we introduce an empirical framework that provides model-free measures

of regret across different user types. We find that personalized algorithms generate significant

welfare gains, but these gains come at the cost of users’ preference learning and independent
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decision-making. Finally, we demonstrate that simple policy interventions can help balance

the trade-off between welfare and learning, offering insights for both platforms and users.

In summary, our study makes several important contributions to the literature. From

a substantive standpoint, we provide a comprehensive analysis of how personalized recom-

mendation systems influence both welfare and learning outcomes, combining theoretical and

empirical models. While these algorithms improve welfare by offering better product recom-

mendations, they can also hinder users’ learning and independent decision-making ability.

Therefore, our work contributes to the policy debate around personalized algorithms by

uncovering the foundations of algorithmic dependence and emphasizing its negative effects on

users’ ability to make independent decisions, offering insights that are particularly pertinent

in light of the growing concerns surrounding adversarial AI.

Methodologically, we develop a theoretical framework to study algorithmic dependence

and establish theoretical regret bounds based on users’ reliance on personalized algorithms.

A key innovation of our approach is its ability to capture the information advantage of these

algorithms through a low-rank assumption and access to experience features unavailable

to users. Additionally, we introduce a counterfactual regret measure that serves as a

valuable benchmark for assessing the impact of adversarial AI. From a policy perspective,

we demonstrate that straightforward exploration-based strategies can effectively balance

the trade-off between welfare and learning. Our findings provide valuable insights for both

managers and consumers. For managers, we propose that achieving a balance between

performance and user learning is feasible at a low business cost. Similarly, our results offer

self-regulation insights for consumers, enabling them to manage their own dependence on

recommendation systems by taking simple steps.

Nevertheless, our paper has certain limitations that open avenues for future research.

First, our findings are largely based on the established theories on user learning. One could

design a long-run randomized experiment and verify these findings in the field. Second,

our paper focuses on experiential preference learning. Future research can extend our work

to different forms of learning (e.g., learning how to perform a task) and study the impact

of algorithms on those learning outcomes. Finally, our paper studies exogenous levels of

dependence on personalized algorithms to quantify the downstream consequence of this

dependence. Future work can endogenize this aspect and examine the mechanisms behind

this algorithmic dependence.
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Appendices

A Analytical Derivation of Bayes Updating Rule with Gaussian
Noise

Proof. First, we start from a fundamental result in Bayesian statistics:

Lemma 1. (Bayes rule for linear Gaussian systems - Theorem 4.4.1 in Murphy [2012])
Suppose we have two variables, X and Y . Let X ∈ RDx be a hidden variable and Y ∈ RDy

be a noisy observation of X. Assume the following prior and likelihood:

P(X) = N (µX ,ΣX), P(Y | X) = N (AX +B,ΣY ).

The posterior P(X | Y ) is then given by:

P(X | Y ) = N (µX|Y ,ΣX|Y ),

where the posterior mean and covariance are:

Σ−1
X|Y = Σ−1

X + A⊤Σ−1
Y A,

µX|Y = ΣX|Y
(
Σ−1

X µX + A⊤Σ−1
Y (Y −B)

)
.

We now apply Lemma 1 to our specific setting. At any given time t, we have the following
prior belief about θi:

θi,t ∼ N (µi,t,Σi,t).

New observations at time t are given by the action Ai,t ∈ Rd×1 and utility Ui,t. According
to Equation (1),

ui(Aj) = θ⊤i Aj + ϵi,j,

where ϵi,j ∼ N (0, σ2
ϵ ). Therefore, the likelihood of observing Ui,t given θi is:

Ui,t | Ai,t, θi ∼ N (A⊤
i,tθi, σ

2
ϵ ).

Thus, we clearly define the prior and likelihood as:

P(θi) = N (µi,t,Σi,t), P(Ui,t | θi, Ai,t) = N (A⊤
i,tθi, σ

2
ϵ ).

Using Lemma 1, the posterior variance is updated as follows:

Σ−1
i,t+1 = Σ−1

i,t + A⊤
i,t(σ

−2
ϵ )Ai,t.

Since σ−2
ϵ is a scalar, this simplifies to:
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Σ−1
i,t+1 = Σ−1

i,t +
1

σ2
ϵ

Ai,tA
⊤
i,t.

Next, applying Lemma 1, we also update the posterior mean:

µi,t+1 = Σi,t+1

(
Σ−1

i,t µi,t + A⊤
i,t(σ

−2
ϵ )Ui,t

)
.

Simplifying further (again, since σ−2
ϵ is scalar), we obtain:

µi,t+1 = Σi,t+1

(
Σ−1

i,t µi,t +
1

σ2
ϵ

Ai,tUi,t

)
.

Therefore, we’ve explicitly derived the posterior distribution:

θi | Ui,t, Ai,t ∼ N (µi,t+1,Σi,t+1),

with posterior mean and variance:

Σ−1
i,t+1 = Σ−1

i,t +
1

σ2
ϵ

Ai,tA
⊤
i,t, µi,t+1 = Σi,t+1

(
Σ−1

i,t µi,t +
1

σ2
ϵ

Ai,tUi,t

)
.

B Preliminaries from Information Theory

Since we work with information-theoretic bounds, we need to provide some basic definitions

for the concepts we use in the proofs. We start with Shannon entropy that appears in our

regret analysis and is one of the most fundamental concept in information theory:

Definition 5. For variable X, the Shannon entropy is defined as:

H(X) = −
∑
x∈X

P (X = x) log (P (X = x)) (17)

Naturally, Shannon entropy quantifies the uncertainty or information content in a probabil-

ity distribution. It measures how unpredictable or surprising an outcome is when drawn from

a given set of probabilities. Another important definition is the Kullback-Leibler divergence,

which is defined for any two probability measures as follows:

Definition 6. The Kullback-Leibler (KL) divergence between two probability measures P and
Q, where P is absolutely continuous with respect to Q, is defined as:

DKL(P∥Q) =

∫
log

(
dP

dQ

)
dP. (18)

Here, dP
dQ

is the Radon–Nikodym derivative of P with respect to Q, which represents the density
of P relative to Q.
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KL divergence measures how much one probability distribution differs from another.

Intuitively, it quantifies the amount of extra information required to describe data sampled

from one distribution (P ) when using a different distribution (Q) as a reference. is not

symmetric, meaning switching P and Q gives a different result. This reflects the fact that

using Q to approximate P may lead to more or less information loss than vice versa. As

expected, DKL(P∥Q) is zero if and only if P = Q everywhere, meaning there is no difference

between the two distributions.

Lastly, we define the concept of mutual information between two variables as follows:

Definition 7. The mutual information between two random variables X and Y is defined as:

I(X;Y ) = DKL(P (X, Y )∥P (X)P (Y )) (19)

Alternatively, it can be expressed in terms of entropy:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (20)

Intuitively, mutual information (MI) measures the amount of information that one random

variable provides about another. It quantifies how much knowing X reduces uncertainty

about Y (or vice versa). Unlike KL divergence, the mutual information is symmetric. The

independence properties nicely transfer to the concept of mutual properties. For example, if

Z is independent of both X and Y , we have:

I(X;Y | Z) = I(X;Y ) (21)

Further, the probability chain rule appears in additive terms as follows:

I(X; (Y, Z)) = I(X;Y ) + I(X;Z | Y ) (22)

The chain rule offers great convenience in settings with a large number of variables. Lastly,

we present a KL divergence form of mutual information as follows:

I(X;Y ) =
∑
x∈X

P (X = x)DKL(P (Y | X = x)∥P (Y )) (23)

For the proof of this equation, please refer to Russo and Van Roy [2016].

C Proofs

In this section, we present the proofs for the propositions in the main text. We start with

some useful lemmas in Appendix C.1 that later allow us to prove the propositions in the main
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text. We then present a proof for the general case of a linear reward function in Appendix

C.2. We present the proofs for propositions in the main text in Appendix C.3.

C.1 Useful Lemmas for a Generic Linear Reward Case

We present a general case of a reward function R, which is defined as a linear function of

action characteristics through parameters β as follows:

R(Aj) = βTAj + νj, (24)

where Aj is an action with d-dimensional features such that Aj ∈ A ⊂ Rd and β ∈ Rd is

the weights and νj is the idiosyncratic term with known variance σν . One may notice the

similarity between this reward characterization and our utility specification. The reason we

define this more generally is to use it as a reference in the analysis of regret in both cases.

As such, we refer to reward when discussing the general case, and utility in our main models

that are specific to the context of experience products. We further drop index i for brevity.

One could easily add individual-specific indices for reward parameters.

Let A∗ denote the first-best action, that is, A∗ = argmaxAj∈A E[R(Aj) | β], which allows

us to define expected regret the same way as in Definition 2. Further, let ATS denote the

action chosen by the Thompson Sampling algorithm given the prior information set H. A key

property of the Thompson Sampling algorithm is its probability matching, which is reflected

in the following equation:

P (ATS = Aj | H) = P (A∗ = Aj | H) (25)

Intuitively, it means that the probability that the first-best is equal to each action is the

same as the probability the algorithm chooses that action, given the information available.

The feature above is why the Thompson Sampling is often referred to as the probability

matching algorithm, and makes the application of this algorithm appealing in real settings

[Chapelle and Li, 2011]. We use this feature in establishing the regret bounds as both the

self-exploring and RS-dependent users in our context use different version of the Thompson

Sampling algorithm.

We define an important matrix M ∈ R|A|×|A|, where each element in this matrix is defined

as follows:

Mj,k =
√

P (A∗ = Aj)
√

P (A∗ = Ak) (E [R(Aj) | A∗ = Ak]− E [R(Aj)]) , (26)

where the two terms under the square root are the probabilities of the optimal action being
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equal to actions corresponding to the row and column of the matrix, and the last term is

the expected reward from action Aj given the information that action Ak is first-best minus

the unconditional expected reward for action Aj. Though it may not be clear why we define

such a matrix, its properties allow us to obtain bounds that later help us in establishing the

information-theoretic regret bounds. Before we present a few important lemmas, we stress

that the matrix M is not to be confused with our utility matrix as it is only defined for

product pairs. Lastly, it is worth emphasizing that the matrix M can be defined for any prior

history H. We drop that from the notation for simplicity.

We start by a simple fact for any matrix and write the following lemma:

Lemma 2. For any matrix Q ∈ Rk×k, the following property holds:

tr(Q) ≤ ∥Q∥F
√
Rank(Q), (27)

where tr(Q) is the trace of the matrix (tr(Q) =
∑k

i=1Qi,i), and ∥Q∥F is the Frobenius norm

of the matrix, that is, ∥Q∥F =
√∑k

i=1

∑k
j=1 Q

2
i,j.

Proof. Let r̃ denote the rank of matrix Q[k×k] where r̃ singular values are denoted by
σ̃1, σ̃2, · · · , σ̃r̃. Further, let ∥Q∥∗ denote the nuclear norm of matrix Q such that ∥Q∥∗ =∑r̃

i=1 σ̃i. On the one hand, we can write:

tr(Q) = tr

(
1

2
Q+

1

2
QT

)
(1)

≤ ∥1
2
Q+

1

2
QT∥∗

(2)

≤ 1

2
∥Q∥∗ +

1

2
∥QT∥∗

(3)
= ∥Q∥∗, (28)

where inequality (1) is a result of Von Neumann’s trace inequality, (2) applies the triangle
inequality, and (3) uses the fact that ∥Q∥∗ = ∥QT∥∗. On the other hand, we can write the
following inequality for the nuclear norm:

∥Q∥∗ =
r̃∑

i=1

σ̃i

(1)

≤
√
r̃

√√√√ r̃∑
i=1

σ̃2
i =
√
r̃∥Q∥F , (29)

where (1) is an application of Cauchy-Schwarz inequality. Combining Equations (28) and
(29), we arrive at the following inequality and complete the proof:

tr(Q) ≤
√
r̃∥Q∥F (30)

We can apply Lemma 2 to matrix M and arrive at the following inequality:

tr(M) ≤
√

Rank(M)∥M∥F (31)
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We now attemp to further simplify all three pieces in the equation above: (1) trace of matrix

M , (2) rank of matrix M , and (3) Frobenius norm of matrix M. We do so in the following

sections:

C.1.1 Trace of Matrix M

We start with the trace of the matrix. We can write the following lemma:

Lemma 3. For the matrix M defined in Equation (26), the following equality holds:

tr(M) = E [R (A∗)]− E
[
R
(
ATS

)]
(32)

Proof. The proof of this lemma uses the probability matching feature of the Thompson
Sampling algorithm that yields P (ATS = Aj) = P (A∗ = Aj). We can write:

tr(M) =
∑
Aj∈A

P (A∗ = Aj) (E [R(Aj) | A∗ = Ak]− E [R(Aj)])

=
∑
Aj∈A

P (A∗ = Aj)E [R(Aj) | A∗ = Ak]−
∑
Aj∈A

P (A∗ = Aj)E [R(Aj)]

=
∑
Aj∈A

P (A∗ = Aj)E [R(Aj) | A∗ = Ak]−
∑
Aj∈A

P (ATS = Aj)E
[
R(Aj) | ATS = Ak

]
= E [R (A∗)]− E

[
R
(
ATS

)]
(33)

C.1.2 Rank of Matrix M

We now focus on the second element in Equation (31): rank of matrix M . The following

lemma characterizes the upper bound for the rank of this matrix as follows:

Lemma 4. For the matrix M defined in Equation (26), the rank is bounded as follows:

Rank(M) ≤ d (34)

Proof. We can rewrite Mj,k as follows:

Mj,k =
√

P (A∗ = Aj)
√
P (A∗ = Ak (E [R(Aj) | A∗ = Ak]− E [R(Aj)])

=
√

P (A∗ = Aj)
√
P (A∗ = Ak

(
E
[
βT | A∗ = Ak

]
Aj − E

[
βT
]
Aj

)
=
√

P (A∗ = Aj)
√
P (A∗ = Ak

(
E
[
βT | A∗ = Ak

]
− E

[
βT
])

Aj

(35)

Since both E
[
βT | A∗ = Ak

]
and Aj are d-dimensional, we show that the rank of matrix M
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is upper bounded by d. Therefore, Rank(M) ≤ d.

C.1.3 Frobenius Norm of Matrix M

We now focus on the third piece of the inequality in Equation (31): the Frobenius norm of

matrix M . This is one of the pieces where the information-theoretic aspect of our problem

appear. We first show a simple lemma about the mutual information:

Lemma 5. For the three variables A∗, ATS, and R(ATS), the following relationship holds:

I
(
A∗;
(
ATS, R

(
ATS

)))
=

∑
Aj ,Ak∈A

p∗jp
∗
kDKL (P (R(Aj) | A∗ = Ak) ∥P (R(Aj)) (36)

where p∗j = P (A∗ = Aj) and p∗k = P (A∗ = Ak).

Proof. We start by rewriting I
(
A∗;
(
ATS, R

(
ATS

)))
using a few simple facts about mutual

information:

I
(
A∗;
(
ATS, R

(
ATS

)))
= I(A∗;ATS) + I(A∗;R(ATS) | ATS)

= I(A∗;R(ATS) | ATS)

=
∑
Aj∈A

P (ATS = Aj)I(A
∗;R(ATS) | ATS = Aj)

=
∑
Aj∈A

P (ATS = Aj)I(A
∗;R(Aj))

=
∑
Aj∈A

p∗j

(∑
Ak∈A

p∗kDKL (P (R(Aj) | A∗ = Ak) ∥P (R(Aj))

)
=

∑
Aj ,Ak∈A

p∗jp
∗
kDKL (P (R(Aj) | A∗ = Ak) ∥P (R(Aj)) ,

(37)

where the first line is the application of chain rule, the second line uses the fact that A∗ is
independent of ATS, the third line just expands, the fourth line uses the independence of ATS

from both A∗ and R(ATS), and the fifth line applies Equation (23).

The right-hand side of Equation (37) presents the mutual information in terms of KL

divergence, which can be further simplified using Pinsker’s inequality through the following

lemma:

Lemma 6. Suppose that the error term in the reward function in Equation (24) comes from
N(0, σ2

ν). The following inequality holds:

DKL (P (R(Aj) | A∗ = Ak) ∥P (R(Aj)) ≥
[(E [R(Aj) | A∗ = Ak]− E [R(Aj)])]

2

2σ2
ν

(38)
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Proof. Please see the proof for Fact 9 and Lemma 3 in Russo and Van Roy [2016].

We can now combine Lemma 6 with Lemma 5 to write the following lemma about the

Frenobius norm of matrix M :

Lemma 7. The following inequality holds for the Frobenius norm of matrix M in Equation
(26):

∥M∥F ≤ 2σ2
νI
(
A∗;
(
ATS, R

(
ATS

)))
(39)

Proof. We can expand the Frobenius norm of matrix M as follows:

∥M∥F =
∑

Aj ,Ak∈A

P (A∗ = Aj)P (A∗ = Ak) (E [R(Aj) | A∗ = Ak]− E [R(Aj)])
2

≤
∑

Aj ,Ak∈A

P (A∗ = Aj)P (A∗ = Ak)(2σ
2
ν)DKL (P (R(Aj) | A∗ = Ak) ∥P (R(Aj))

= 2σ2
νI
(
A∗;
(
ATS, R

(
ATS

)))
,

(40)

where the inequality in the second line comes from Lemma 6.

C.1.4 Revisiting the Inequality for Matrix M

We now revisit the inequality for matrix M in Equation (31), using all the lemmas above

that help us simplify a relationship the mutual information and the per-period regret. In

particular, Lemma 3 connects the per-period regret term to the trace of matrix M , and

Lemma 7 connects the mutual information to the Frobenius norm of matrix M . We can write

the following lemma for the relationship between the mutual information and the regret:

Lemma 8. The ratio of the squared per-period regret to the mutual information between A∗

and ATS has the following upper bound:[
E [R (A∗)]− E

[
R
(
ATS

)]]2
I (A∗; (ATS, R (ATS)))

≤ 2σ2
νd (41)

Proof. We can write:[
E [R (A∗)]− E

[
R
(
ATS

)]]2
I (A∗; (ATS, R (ATS)))

=
tr(M)

I (A∗; (ATS, R (ATS)))

≤ Rank(M)∥M∥F
I (A∗; (ATS, R (ATS)))

≤
d2σ2

νI
(
A∗;
(
ATS, R

(
ATS

)))
I (A∗; (ATS, R (ATS)))

= 2σ2
νd,

(42)
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where the first line applies Lemma 3, the second line applies the matrix inequality in Equation
(31), and the third line applies Lemma 7.

C.2 Regret Bounds for the General Case of Linear Reward

We now establish the regret bound for the general case with linear rewards and d-dimensional

action space as follows:

Lemma 9. Suppose that the reward function is linear in action features as in Equation (24),
where the error term comes from N(0, σ2

ν) and the algorithm has access to the information
about all features when making the decision. Further, assume that H(A∗

0) is the Shannon
entropy of the optimal action given the prior. The following regret bound holds for the
Thompson Sampling algorithm with policy πTS for any T :

Regret(T, πTS) =
√

2σ2
νdH(A∗

0)T (43)

Proof. The proof uses the bound established in Lemma 8 and other inequalities as follows:

Regret(T, πTS) = E

[
T∑
t=0

(
R (A∗)−R

(
ATS

t

))]

= E

[
T∑
t=0

E
[(
R (A∗)−R

(
ATS

t

))
| Ht

]]

= E

[
T∑
t=0

E
[(
R (A∗)−R

(
ATS

t

))
| Ht

]√
I (A∗; (ATS

t , R (ATS
t )) | Ht)

√
I (A∗; (ATS

t , R (ATS
t )) | Ht)

]

≤
√

2σ2
νd E

[
T∑
t=0

√
I (A∗; (ATS

t , R (ATS
t )) | Ht)

]

≤
√

2σ2
νd

√√√√TE

[
T∑
t=0

I (A∗; (ATS
t , R (ATS

t )) | Ht)

]

=
√

2σ2
νd

√√√√T

[
T∑
t=0

I
(
A∗;
(
ATS

t , R (ATS
t )) | {ATS

τ , R (ATS
τ )}t−1

τ=0

))]
=
√

2σ2
νd
√

TI (A∗; {ATS
τ , R (ATS

τ )}tτ=0)

=
√

2σ2
νd
√

T [H (A∗)−H (A∗ | {ATS
τ , R (ATS

τ )}tτ=0)]

≤
√

2σ2
νd
√
TH (A∗),

(44)

where the first line simply writes the equation for regret, the second line uses the law of
iterated expectation to account for per-period information Ht that is available, the third
line simply includes a mutual information term in the numerator and denominator that is
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shown to be positive in Lemma 7, the fourth line uses Lemma 8, the fifth line applies the
Cauchy-Schwarz inequality to the summation, the sixth line expands the mutual information
term, the seventh line applies the chain rule for mutual information, the eighth line rewrites
the mutual information in terms of Shannon entropy, and the ninth line uses the fact that
the Shannon entropy is always non-negative.

The lemma above, along with the ones earlier, all heavily borrow from Russo and Van Roy

[2016]. We present them here in the appendix of our paper, so the reader can refer to the

proofs here. In light of Lemma 9, we can prove the propositions in our main text.

C.3 Proof for Propositions

C.3.1 Proof for Proposition 1

Proof. The proof for Proposition 1 follows the decomposition presented in the main text of
the paper. We can first expand that decomposition as follows:

Regreti(T ; π) = E

[
T∑
t=0

(ui(A
∗
i )− ui(Ai,t))

]

= E

[
T∑
t=0

(ui(A
∗
i )− ui(A

∗,s
i ))

]
+ E

[
T∑
t=0

(ui(A
∗,s
i )− ui(Ai,t))

]

= gT + E

[
T∑
t=0

(ui(A
∗,s
i )− ui(Ai,t))

]
,

(45)

where A∗,s
i is the first-best product given the search features. We apply Lemma 9 to the

second term. We use the fact that the utility function by the self-exploring user can is
a reward function with s-dimensional parameters, where the variation of the utility from
experience features goes into the error term. We denote the variance of this error term by
σ2
SE. As such, applying Lemma 9 gives us the upper bound of

√
2σ2

SEsH(A∗
0)T . We further

note that the variance σ2
SE is upper bounded as follows:

σ2
SE ≤ σ2

ϵ + σ2
x, (46)

where the equality holds if there is no mutual information between the experience and search
features. This completes the proof.

C.3.2 Proof for Proposition 2

Proof. This proof uses a simple lemma that finds upper and lower bounds for the expected
maximum of k draws from a Normally distributed variable. We state the lemma as follows:

Lemma 10. Let X1, X2, . . . , Xk ∼ N (µ, σ2) be i.i.d. normal random variables with mean µ
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and standard deviation σ. Define the maximum:

Mk = max(X1, X2, . . . , Xk).

Then, the expectation E[Mk] satisfies the following bounds for any k ≥ 2:

µ+ σ

(√
2 log k − log log k + log(4π)√

8 log k

)
≤ E[Mk] ≤ µ+ σ

(√
2 log k

)
(47)

Proof. Let X1, X2, . . . , Xk ∼ N (µ, σ2) be i.i.d. normal random variables. Define the stan-
dardized variables:

Zi =
Xi − µ

σ
, so that Zi ∼ N (0, 1).

Let Mk = max(X1, X2, . . . , Xk) and define the corresponding standardized maximum:

Z(k) = max(Z1, Z2, . . . , Zk).

To find the upper bound, we apply a series of inequalities and definitions for some t > 0 as
follows:

exp
(
tE[Z(k)]

)
≤ E

[
exp

(
tZ(k)

)]
= E

[
max

i
exp (tZi)

]
≤

k∑
i=1

E [exp (tZi)]

= k exp

(
t2

2

)
,

(48)

where the first line applies the Jensen’s inequality, the second line uses the definition of Z(k),
the third line applies the union bound, and the fourth line applies the moment generating
function. Taking logs from both sides of Equation (48), we have tE[Z(k)] ≤ log(k) + t2/2,
which we can simplify as follows:

E[Z(k)] ≤
log(k)

t
+

t

2
(49)

To find a tight upper bound, we choose t that minimizes the RHS of Equation (49), which is
t =

√
2 log(k). This gives us the following upper bound:

E[Z(k)] ≤
√

2 log(k). (50)

To obtain the lower bound, we seek to approximate E[Z(k)], which can be related to extreme
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value approximations. The cumulative distribution function (CDF) of Z(k) is given by:

FZ(k)
(z) = P (Z(k) ≤ z) = P (Z1 ≤ z, . . . , Zk ≤ z) = (Φ(z))k .

The probability density function (PDF) is then:

fZ(k)
(z) = k (Φ(z))k−1 ϕ(z),

where Φ(z) and ϕ(z) denote the standard normal CDF and PDF, respectively. A well-known
result in extreme value theory provides an approximation for E[Z(k)]:

E[Z(k)] ≥
√

2 log(k)− log(log(k)) + log(4π)√
8 log(k)

. (51)

Combining Equations (50) and (51), we get the following result:√
2 log(k)− log(log(k)) + log(4π)√

8 log(k)
≤ E[Z(k)] ≤

√
2 log k, for k ≥ 2.

By scaling back to the original normal variables:

E[Mk] = µ+ σE[Z(k)],

we obtain the desired bounds:

µ+ σ

(√
2 log(k)− log(log(k)) + log(4π)√

8 log(k)

)
≤ E[Mk] ≤ µ+ σ

(√
2 log k

)
.

We now use this lemma for the expected maximum when it comes from N(µi,s+µi,x, σ
2
i,s+

σ2
i,x) (actual first-best) and when it comes from N(µi,s, σ

2
i,s) (search first-best). We first apply

the lower bound in Lemma 10 to get the following result:

E [ui(A
∗
i )] ≥ (µi,x + µi,s) +

√
σ2
i,x + σ2

i,s

(√
2 log(|A|)− log(log(|A|)) + log(4π)√

8 log(|A|)

)

= (µi,x + µi,s) +
√
2 log(|A|)

√
σ2
i,x + σ2

i,s

(
1− log(log(|A|)) + log(4π)

4 log(|A|)

) (52)

We now apply the upper bound in Lemma 10 to the utility from the search first-best, which
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results in the following result:

E [ui(A
∗
i )] = E

[
s∑

k=1

θi,kA
∗
k,i

]
+ E

[
d∑

l=s+1

θi,lA
∗
l,i

]
= E[max

j
U s
i,j] + µi,x

≤ µi,s + σi,s

(√
2 log(|A|)

)
+ µi,x,

(53)

where the first equality only splits the search and experience features, the second line uses
the independence between search and experience utility across products, and the third line
applies Lemma 10.

Combining Equations (52) and (53), we get the following result and complete the proof:

E [ui(A
∗
i )− ui(A

∗,s
i )] ≥

√
2 log(|A|)

(√σ2
i,s + σ2

i,x − σi,s

)
−O


√

σ2
i,s + σ2

i,x

log(|A|)

 (54)

C.3.3 Proof for Proposition 3

Proof. The proof for Proposition 3 directly applies Lemma 9 to the case of an r-dimensional
action space. In this case, the variance of the error term for the reward function is σ2

ϵ .
Therefore, the upper bound for regret can be written as follows:

Regret(T ; πRS) ≤
√

2σ2
ϵ rH(ARS

i,0 )T ,

D Details of the Empirical Framework

D.1 Details on the Movie Attributes

Table A1 presents the top tags in the MovieLens dataset.
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Table A1: Top 100 Movie Lens Data Tags

Top 1-34 Top 35-68 Top 69-100

original pg-13 unlikely friendships
mentor cinematography passionate
great ending redemption very interesting
catastrophe light dramatic
dialogue intense relationships
good family so bad it’s funny
great corruption independent film
chase not funny murder
runaway unusual plot structure sexy
good soundtrack twists & turns drinking
storytelling entirely dialogue childhood
vengeance suprisingly clever complex
story pornography creativity
weird transformation lone hero
drama cult film atmospheric
greed adapted from:book based on book
great acting happy ending first contact
imdb top 250 very funny entertaining
culture clash death narrated
brutality life & death friendship
fun movie social commentary obsession
adaptation stylized based on a book
criterion interesting loneliness
life philosophy enigmatic sexualized violence
suspense fight scenes oscar (best supporting actress)
melancholic harsh very good
predictable police investigation gunfight
visually appealing revenge stereotypes
talky justice underrated
great movie quirky secrets
oscar (best directing) excellent script nudity (full frontal - brief)
clever feel-good
destiny gangsters
fantasy world violence

D.2 Robustness Checks and Extensions

D.2.1 User’s Preferences on Principal Component Attributes

In the paper, we define the user’s learning based on the top 50 most frequently mentioned

tags and aggregated ratings. Here, we conduct a robustness check where users learn based

on the top 20 Principal Component Attributes and aggregated ratings. The first 20 PCAs

are calculated using all movie tags and capture 80% of total variance in features. Figure A1
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replicates Figure 4 but replaces tag-based learning with PCA attribute-based learning. We

observe a very similar pattern in which the RS model outperforms the User with Learning

model. Additionally, PCA-based learning performs slightly better than tag-based learning,

as indicated by the lower final-period regret compared to the User with Learning model in

Figure 4. This suggests that principal component attributes may contain more movie feature

information than tags alone.

Figure A1: Regret performance of different algorithms when users rely to PCA features

D.2.2 Alternative Performance Metrics

In §5.2, we use regret as our main performance metric. In this section, we focus on additional

performance accuracy measures that evaluate how well each algorithm predicts the ranking

of items. Specifically, we use two commonly employed accuracy metrics: (1) F1-Score, which

compares the top 10 recommendations from the model with the actual top 10 recommendations

in the hold-out set [Chang et al., 2015], and (2) Normalized Discounted Cumulative Gain

(nDCG), an evaluation metric that assesses the quality of a ranked list by comparing the actual

ranking with the ideal (perfect) ranking [Järvelin and Kekäläinen, 2002]. Both of these metrics

are widely adopted in the literature on recommendation systems and collaborative filtering

[Koren et al., 2021]. Figure A2 illustrates the performance of different algorithms in terms of

F1-Score and nDCG. As shown in both figures, the personalized RS quickly outperforms all

other benchmarks, highlighting its efficiency and inherent information advantage.
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(a) F1-Score (b) nDCG

Figure A2: Performance of different algorithms using F1-Score and nDCG metrics

D.2.3 Heterogeneity in Welfare Gains from RS Based on Nicheness of User
Preferences

We want to explore how the nicheness of user preference could affect RS performance. We

define the nicheness of a user using the correlation between the aggregated rating of the

movie and the user’s actual rating of the movie in the training sample. That is, if the user

has a niche preference, then the correlation should be low, as the aggregated rating would

not predict the user’s actual rating well. The lower the correlation, the more niche the user is.

We categorize users into 5 groups based on their nicheness numbers using the 20% quantiles,

where 1 represents the most mainstream users and 5 represents the most niche users.

Figure A3 presents the results corresponding to Figure 4 for user groups with different

levels of nicheness. As observed in the graphs, RS’s welfare gain is inverse-U shaped. When

users are highly mainstream, the aggregated rating alone already provides accurate predictions

of their choices. Conversely, for highly niche users, both RS and the users themselves struggle

to accurately learn preferences. As a result, RS’s relative prediction power is maximized

when users are neither too mainstream nor too niche.
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(a) Welfare Gain (b) Regret

Figure A3: Welfare gain and regret from RS and User with Learning across nicheness of user
preferences

D.2.4 User’s Prior Information Compared to RS

In §5.3, we assume both user types start from a prior that assigns weight one to the aggregate

learning and zero weights to other features. Although aggregate rating is a relatively informed

prior, users can have more informed priors. We manipulate the level of informativeness of

prior by taking the posterior distribution of users in the analysis of §5.3 after watching a

certain number of movies. In particular, we use the posterior distribution of self-exploring

user at period 40, 80, and 120 as the prior for both types of users and measure learning under

for self-exploring and RS-dependent users. Figure A4 shows the KL divergence and RMSE

when users have more informed priors. These measures are calculated using the difference

between the posterior at each point and the prior used in the analysis of §5.3: prior mean

one for the aggregate rating, prior mean zero for other parameters, and prior variance one for

all parameters. Across all prior settings, we replicate our main finding that the self-exploring

user learns more than the RS-dependent user. As expected, the more informed the prior gets,

the total amount of learning is lower for both groups, since they start from an informed prior

that does not leave much room for additional learning.
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(a) KL Divergence (Prior 40 Periods) (b) RMSE (Prior 40 Periods)

(c) KL Divergence (Prior 80 Periods) (d) RMSE (Prior 80 Periods)

(e) KL Divergence (Prior 120 Periods) (f) RMSE (Prior 120 Periods)

Figure A4: User Learning under Different Algorithms (with User’s Prior Information)

E Algorithm for the Random Availability Policies

In Section 5.4, we propose the policies with random availability. We show the detailed

pseudo-code in Algorithm 4. Most parts of this algorithm are similar to Algorithm 3. The

main difference is that the algorithmic recommendation is only available with a probability p.
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Algorithm 4 Choice and Learning for the RS-Dependent User with Stochastic RS Availability

Input: µ
(θ)
i,0 ,Σ

(θ)
i,0 , µ

(γ)
i,0 ,Σ

(γ)
i,0 , F,A, T , p

Output: Hi,T , {µ(θ)
i,t ,Σ

(θ)
i,t }Tt=1, {µ

(γ)
i,t ,Σ

(γ)
i,t }Tt=1

1: for t = 0→ T do
2: ξi,t ∼ Bernoulli(p) ▷ Determine RS Availability
3: if ξi,t = 1 then

4: γ̃i,t ∼ N(µ
(γ)
i,t ,Σ

(γ)
i,t ) ▷ RS: Distribution Sampling

5: Ai,t ← argmaxAj∈A
∑r

k=1 γ̃i,k,tFk,j ▷ RS: Recommendation Selection
6: else
7: θ̃i,t ∼ N(µi,t,Σi,t) ▷ User: Distribution Sampling
8: Ai,t ← argmaxAj∈A

∑s
k=1 θ̃i,k,tAk,j ▷ User: Action Selection

9: end if
10: Refer to Algorithm 3 for belief updating steps.
11: end for
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