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Abstract. In this paper, we propose a unified dynamic framework for adaptive ad 
sequencing that optimizes user engagement with ads. Our framework comprises three 
components: (1) a Markov decision process that incorporates intertemporal tradeoffs in ad 
interventions, (2) an empirical framework that combines machine learning methods with 
insights from causal inference to achieve personalization, counterfactual validity, and scal
ability, and (3) a robust policy evaluation method. We apply our framework to large-scale 
data from the leading in-app ad network of an Asian country. We find that the dynamic 
policy generated by our framework improves the current practice in the industry by 5.76%. 
This improvement almost entirely comes from the increased average ad response to each 
impression instead of the increased usage by each user. We further document a U-shaped 
pattern in improvements across the length of the user’s history, with high values when the 
user is new or when enough data are available for the user. Next, we show that ad diversity 
is higher under our policy and explore the reason behind it. We conclude by discussing the 
implications and broad applicability of our framework to settings where a platform wants 
to sequence content to optimize user engagement.

History: Olivier Toubia served as the senior editor for this article. 
Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/ 

mksc.2022.1423. 
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1. Introduction
1.1. Motivation for Adaptive Ad Sequencing
Consumers now spend a significant portion of their 
time on mobile apps. The average time spent on mobile 
apps by U.S. adults has grown steadily over the last few 
years, surpassing four hours per day for the first time in 
the first quarter of 2021 (Kristianto 2021). This demand 
expansion, in turn, has amplified marketing activities 
targeted toward mobile app users. In 2020, mobile ad
vertising generated nearly $100 billion in the United 
States, accounting for more than double the share of its 
digital counterpart, desktop advertising (IAB 2021). 
Most of this growth in mobile advertising is attributed 
to in-app ads (i.e., ads shown inside mobile apps), with 
more than 80% of ad spend in the mobile advertising 
category (eMarketer 2018).

Two key features of mobile in-app ads have contrib
uted to this dramatic growth. First, the mobile app eco
system has excellent user tracking ability, thereby 
allowing “personalization” of ad interventions and tar
geting of users based on their prior behavioral history 
(Han et al. 2012). Second, in-app ads are usually refresh
able and dynamic in nature: Each ad intervention is 
shown for a fixed amount of time (e.g., 30 seconds or 
one minute) inside the app and followed by another ad 

intervention. As such, a user can see multiple ad expo
sures within a session.1 Refreshable ads, together with 
the potential for personalization, make in-app adver
tising amenable to “adaptive ad sequencing,” that is, 
optimizing the sequence of ads based on real-time be
havioral information.

Adaptive ad sequencing brings a forward-looking 
perspective to the publisher’s ad allocation problem.2
That is, sequencing not only captures the immediate 
user engagement when making a decision to show an 
ad based on the information available, but it also takes 
user engagement in future events and exposures into 
account. Figure 1 illustrates this point by differentiating 
between the information available from the past and 
the information that would be available in the future. 
However, most platforms do not use a forward-looking 
model for ad allocation because it substantially adds to 
the complexity of the model.3 This is one of the reasons 
why the current state of advertising practice is to use 
supervised learning and contextual bandit algorithms 
that only focus on the data available at the moment and 
ignore the future exposures (Theocharous et al. 2015). 
Furthermore, the returns from adopting a forward- 
looking model are not clear. Thus, the publisher’s deci
sion on whether to use a dynamic framework boils 
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down to whether incorporating future information 
helps them achieve a better outcome.

In principle, using a forward-looking framework is 
only valuable when there is interdependence between 
ad exposures; that is, the ad shown in the current expo
sure affects the performance of future exposures and the 
overall value created by the system. The impact of the 
publisher’s current decision on the future exposures can 
fundamentally be of two types: (1) extensive margin, 
which means that the user will stay longer in the session 
and generate more exposures, and (2) intensive margin, 
which means that the engagement with each exposure in 
the future will be higher, on average. Prior literature on 
advertising offers multiple accounts that suggest a great 
possibility for value creation through both channels. On 
the one hand, sequencing can result in greater usage in 
light of studies on the link between advertising and sub
sequent usage (Wilbur 2008, Goli et al. 2021). On the 
other hand, sequencing can increase the response rate to 
each exposure by better managing effects of carryover, 
spillover, temporal spacing, and variety (Rutz and Buck
lin 2011, Jeziorski and Segal 2015, Sahni 2015, Lu and 
Yang 2017, Rafieian and Yoganarasimhan 2022b).

1.2. Research Agenda and Challenges
The dynamic effects of advertising give rise to the inter
temporal tradeoffs in ad allocation. For example, Rafieian 
and Yoganarasimhan (2022b) find that an increase in the 
variety of ads in a session results in a higher engagement 
with the next ad. However, it is not clear that increasing 
variety is the optimal decision at any point because it 
can come at the expense of showing an irrelevant ad. 
Although the dynamic effects of advertising and the 
resulting intertemporal tradeoffs are well established in 
the literature, neither research nor practice has looked into 
how we can collectively incorporate these findings to opti
mize publisher’s outcomes by dynamically sequencing 
ads. Our goal in this paper is to fill this gap by developing 

a unified framework for adaptive ad sequencing and doc
umenting the gains from this framework.

To build such a framework, we first need to specify 
our objective. We view the problem through the lens of 
a publisher who aims to maximize the expected num
ber of clicks per session. Although our framework is 
general and can accommodate any measure of user 
engagement over any optimization horizon, we focus 
on clicks as our measure of user engagement because 
clicks are instrumental to a publisher’s business model 
in mobile in-app advertising. With our objective in 
place, we seek to answer the following three questions: 

1. How can we develop a unified dynamic frame
work that incorporates the intertemporal tradeoffs in 
ad allocation and designs a policy that maximizes user 
engagement?

2. How can we empirically evaluate the performance 
of the counterfactual policy identified by our adaptive 
ad sequencing framework?

3. What are the gains from using our adaptive ad 
sequencing framework over existing benchmarks? Are 
these gains due to increased usage (extensive margin) or 
increased average ad response (intensive margin)? Which 
session characteristics are linked to greater gains? How 
different is the policy identified by our framework from 
the benchmark policies?

1.3. Our Approach
In this paper, we present a unified three-pronged frame
work that addresses these challenges and develops an 
adaptive ad sequencing policy to maximize user engage
ment with ads. We present an overview of our approach 
in Figure 2, where the top row illustrates that we start 
with a theoretical framework that models the domain 
structure of our problem and informs us of the key 
empirical tasks required for policy identification and 
evaluation, and the bottom row describes the specifics 
of our approach.

Figure 1. (Color online) Visual Schema for the Publisher’s Ad Sequencing Decision 

Notes. The user is at the fifth exposure in the session, and the publisher needs to decide which ad to show to this user. Unlike the myopic pub
lisher that only uses the information from the past, a forward-looking publisher also accounts for the futures exposures when making the 
decision.
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For our theoretical framework, we specify a domain- 
specific Markov decision process (MDP) that charac
terizes the structure of adaptive ad interventions. In 
particular, we use a rich set of state variables that collec
tively incorporate the dynamic effects of advertising 
identified in the literature. Our MDP characterizes the 
reward at any exposure and how the state evolves in 
future periods, given any action taken by the publisher. 
Because our goal is to optimize the number of clicks per 
session, we define the reward as the expected probabil
ity of click, given the state variable and ad. This proba
bility is also part of the state transition, as it helps us 
update the user’s preference in real time for the next 
period. Another probabilistic factor that affects the 
future state is the expected probability of the user leav
ing the session after an intervention, which determines 
with what probability the user will be available to see 
the next ad exposure. The combination of reward and 
transition functions allows us to characterize the pub
lisher’s optimization problem theoretically.

Next, to empirically identify the optimal sequencing 
policy, we develop an empirical framework that allows 
us to evaluate all possible sequencing policies for each 
session. As broken down by our theoretical framework, 
we first need to obtain personalized estimates of the pri
mitives of our MDP: expected click and leave probabili
ties. We do so by using machine learning methods that 
can capture more complex relationships between the 
covariates and the outcome. In particular, we use an 
extreme gradient boosting (XGBoost) algorithm with a 
rich set of features to predict click and leave outcomes. 
To ensure the counterfactual validity of our estimates, 
we use key insights from the causal inference literature 
and narrow down our focus on counterfactual sequences 
that could have been shown in our data. This is because 
machine learning algorithms can only generate accurate 
predictions for instances within the joint distribution of 
the training set used for model fitting. Furthermore, we 
control for propensity scores to account for potential 
selection in our predictions. Last, for the scalability of 
our empirical framework, we develop an algorithm called 

backward induction for q-function approximation (BIQFA) that 
takes the primitive estimates and learns a function that 
approximates the expected sum of current and future 
rewards for each pair of state variables and ad. This func
tion approximation approach avoids the exhaustive search 
over any pair of state and ad, thereby reducing the compu
tational burden substantially.

Although our empirical framework for policy identifi
cation separately evaluates each policy to find the opti
mal one, we cannot use the same evaluation approach to 
assess the performance of our policy because the policy 
identified by our framework will always outperform 
other policies by construction. To address this challenge, 
we develop an approach called Honest Direct Method 
(HDM) that completely separates the evaluation criteria 
for policy identification and policy evaluation: The data 
and models used for identification have no overlap with 
the data and model used for evaluation. To increase the 
robustness of this approach, we use a fully held-out third 
data set for final evaluation that is not used for model 
building in either policy identification or policy evalua
tion stages.

1.4. Findings and Contributions
We apply our framework to the data from a leading 
mobile in-app ad network of a large Asian country. Our 
setting has notable features that make it amenable to our 
research goals. First, the ad network uses a refreshable 
ad format where ad interventions last for one minute 
and change within the session. Second, the ad network 
runs a quasi-proportional auction that uses a probabilis
tic allocation rule, which induces a high degree of ran
domization in ad allocation Together, these two features 
create exogenous variation in the sequences shown in 
the data, thereby satisfying an essential requirement for 
our framework.

To establish the performance of our adaptive ad 
sequencing framework, we evaluate the gains from 
adaptive ad sequencing policy relative to three benchmark 
policies: (1) random policy, which selects ads randomly 
and is often used as a benchmark in the reinforcement 

Figure 2. (Color online) Overview of Our Approach 
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learning (RL) literature, (2) single-ad policy, which only 
shows a single ad with the highest reward in the ses
sion, thereby mimicking the practice of using a nonre
freshable ad slot as is common in desktop advertising, 
and (3) adaptive myopic policy, which uses all the infor
mation available and selects the ad with the highest 
reward at any exposure but ignores the expected future 
rewards. The adaptive myopic policy reflects the stan
dard practice in the advertising industry, where pub
lishers use supervised learning or contextual bandit 
algorithms to estimate click-through rate (CTR) for an 
ad in a given impression.

We evaluate all these policies on a completely held- 
out test set using different metrics. First, we document 
a 79.59% increase in the expected number of clicks 
from our fully dynamic policy over the random pol
icy. Next, we show that our fully dynamic policy 
results in 27.46% greater expected number of clicks 
per session than the single-ad policy. This finding 
demonstrates the opportunity cost of using a nonre
freshable ad slot throughout the session, supporting 
the current industry trend of using refreshable ad 
slots. Finally, we focus on our key comparison in this 
paper and demonstrate a 5.76% gain in the expected 
number of clicks per session from our fully dynamic pol
icy over the adaptive myopic policy. This suggests that 
choosing the best match at any point will not necessarily 
create the best match outcome at the end of the session. 
Instead, the right action sometimes is to show the ad that 
is not necessarily the best match at the moment but tran
sitions the session to a better state in the future. This find
ing provides a strong proof-of-concept for the use of our 
framework. It has important implications for publishers 
and ad networks, especially because the current practice 
in the industry overlooks the dynamics of ad sequencing.

We further compare our policy with the benchmark 
policies using two other metrics: session length and ad 
concentration. Focusing on the session length shows 
how much of the gains from our policy come from an 
increase in usage and the number of impressions gener
ated (extensive margin). Although our policy achieves a 
slightly higher session length, it is only 0.2% greater than 
the session length under the adaptive myopic policy, 
which suggests that the source for our gains is not the 
increase in usage but the increase in the average ad 
response rate (intensive margin). We then focus on ad 
concentration as our next metric and use the Herfindahl- 
Hirschman index (HHI) for ads shown under each pol
icy. Our results reveal an interesting pattern: Adaptive 
ad sequencing policy results in a lower HHI than both 
adaptive myopic and single-ad policies, suggesting a 
greater ad diversity under our policy. A greater ad diver
sity can have long-term implications for the competition 
between advertisers and welfare impacts for consumers.

Next, to better interpret the mechanism underlying 
our gains, we explore the heterogeneity in gains from 

our policy over the adaptive myopic policy. We docu
ment a U-shaped pattern in gains over the number of 
prior sessions a user has been part of. This pattern 
suggests a mix of accounts as the user becomes more 
experienced that affect the gains in opposite direc
tions. We explore these potential accounts in a series 
of regression models that illustrate the heterogeneity 
in gains across presession covariates (e.g., number of 
prior impressions or clicks by the user). To under
stand where the difference between our policy and 
adaptive myopic policy comes from, we first measure 
the discrepancy between the distribution of ad alloca
tion under the two policies using different measures 
such as ℓ-norm and Kullback-Leibler divergence and 
then regress this discrepancy measure on presession 
characteristics. We find that a higher number of past 
impressions is associated with a greater discrepancy 
in distributions. In contrast, a higher variety of prior 
ads and number of past clicks are associated with a 
lower discrepancy in distributions.

In sum, our paper makes several contributions to the 
literature. First, from a methodological standpoint, we 
develop a unified dynamic framework that takes the 
past advertising data and scalably produces an optimal 
dynamic policy to personalize the sequence of ads in a 
session. A key contribution of our adaptive ad sequenc
ing framework that comes from the use of the backward 
induction q-function approximation (BIQFA) algorithm 
is that it does not impose restrictive assumptions on the 
dynamic structure of the problem and remains agnostic 
about how dynamics arise in our setting. To our knowl
edge, this is the first paper that takes a prescriptive 
approach to generate an optimal dynamic policy by 
collectively incorporating the dynamic effects of adver
tising documented in the literature. Substantively, we 
establish the gains from our dynamic framework over a 
set of benchmarks that are often used in research and 
practice. In particular, we demonstrate that the gains 
from adopting the dynamic policy generated by our 
framework are 5.76%, compared with the adaptive myo
pic policy. This proof-of-concept is particularly impor
tant as the current practice in this industry uses the 
adaptive myopic policy and ignores the dynamics of the 
ad allocation problem. We further present a comprehen
sive analysis of the gains from our framework to provide 
interpretation for the mechanism underlying the gains. 
Our findings shed light on when and why our framework 
is more valuable than alternative policies. Last, from a 
managerial perspective, our framework is fairly general 
and can be a applied to a wide variety of domains where a 
platform or publisher aims to optimally sequence content 
to achieve better user-level outcomes, such as sequencing 
of articles to increase audience engagement with the con
tent in news websites, sequencing of social media posts to 
increase user interaction and engagement, and sequenc
ing of push notifications to reduce customer churn.
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2. Related Literature
First, our paper relates to the marketing literature on per
sonalization and targeting. Early papers in this stream 
build Bayesian frameworks that exploit behavioral data 
and personalize marketing mix variables (Rossi et al. 
1996, Ansari and Mela 2003, Manchanda et al. 2006). 
Recent papers in this domain use machine learning al
gorithms often combined with insights from causal in
ference to achieve greater personalization in different 
domains such as search (Yoganarasimhan 2020), adver
tising (Rafieian and Yoganarasimhan 2021), free trial 
length (Yoganarasimhan et al. 2022), and product ver
sioning through offering different ad loads to users (Goli 
et al. 2021).4 Although all these papers focus on prescrip
tive or substantive frameworks to study personalization, 
they all study this phenomenon from a static point of 
view. Our paper extends this literature by bringing a 
dynamic objective to this problem and offering a scalable 
framework to develop forward-looking personalized tar
geting policies. From a substantive viewpoint, we show 
that the gains from adopting such forward-looking per
sonalized policies is 5.76% compared with the baseline 
of myopic personalized policies.

Second, our work relates to both the substantive and 
prescriptive literature on the dynamics of advertising. 
Early work in this domain focuses on aggregate advertis
ing models to understand ad responses over time and 
strategies such as pulsing (Horsky 1977, Little 1979, 
Simon 1982, Naik et al. 1998, Dubé et al. 2005, Aravindak
shan and Naik 2011).5 More recent papers in this domain 
use larger scale individual-level data of digital advertising 
and document different dynamic effects of advertising, 
such as effects of ad carryover or spillover, temporal spac
ing, and variety in search advertising (Rutz and Bucklin 
2011, Jeziorski and Segal 2015, Sahni 2015, Lu and Yang 
2017, Zantedeschi et al. 2017, Rafieian and Yoganarasim
han 2022b). Inspired by the dynamics of advertising, a 
different stream of work brings a more prescriptive view 
to the problem and focuses on the optimal policy design 
for advertisers and platforms. Given the complexity of 
the problem, these papers often simplify the problem by 
mapping the entire space into a few segments (Urban 
et al. 2013), ignoring intertemporal tradeoffs through a 
bandit specification (Schwartz et al. 2017), or imposing 

some structure on the dynamics to find a closed-form 
solution (Wilbur et al. 2013, Kar et al. 2015, Sun et al. 
2017). Table 1 summarizes the prior work on ad al
location in terms of using (1) individual-level data to 
allow for ad personalization, (2) forward-looking (as op
posed to myopic) framework, (3) high-dimensional state 
space that captures all the dynamic effects of adverti
sing, and (4) no parametric assumption on state transi
tions (dynamics-agnostic). As shown in Table 1, none of 
the existing work of ad allocation satisfies all the four cri
teria, which highlights the contribution of our paper: 
Using the BIQFA algorithm allows us to collectively incor
porate all the documented dynamic effects of advertising 
and find the optimal dynamic policy without reducing 
the richness and dimensionality of the state space or im
posing any structure on the dynamics of the problem.

Finally, our paper relates to the literature on offline 
or batch RL, where the learner does not actively interact 
with the environment and must rely on observational 
data from the past to design an optimal dynamic policy. 
This class of problems is particularly relevant when 
safety guarantees are of utmost priority, and the system 
is not allowed to actively explore (Thomas et al. 2019). 
An important task in all these problems is to find a 
robust approach to evaluate counterfactual policies, 
that is, policies that have not necessarily been imple
mented in the data available. This problem is often 
referred to as off-policy policy evaluation in the offline 
RL literature, and a variety of approaches is proposed 
that use both model-based and model-free approaches 
for off-policy policy evaluation (Thomas et al. 2015, 
Thomas and Brunskill 2016, Le et al. 2019, Kallus and 
Uehara 2020). Closely related to our empirical context, 
Theocharous et al. (2015) use real advertising data and 
extend the problem of personalized ad recommenda
tion to a dynamic setting. However, their paper only 
captures usage-related dynamics and ignores other dy
namic ad effects such as temporal spacing, spillover, 
and variety. As such, the empirical results are a bit mixed 
with a low level of confidence in establishing gains 
from dynamic over myopic policies, despite their use 
of a high-confidence off-policy evaluation framework. 
Our work uses platform data with a richer state space 
and develops a dynamic framework that collectively 

Table 1. Positioning of Our Paper with Respect to the Prior Literature on Ad Allocation

Paper
Individual-level 

data
Forward-looking 

allocation
High-dimensional 

state space
Dynamics-agnostic 

(no assumption)

Dubé et al. (2005) ✗ ✓ ✗ ✓

Urban et al. (2013) ✓ ✗ ✗ ✗

Wilbur et al. (2013) ✓ ✓ ✗ ✗

Kar et al. (2015) ✓ ✓ ✗ ✗

Schwartz et al. (2017) ✓ ✗ ✗ ✗

Sun et al. (2017) ✓ ✓ ✗ ✗

Theocharous et al. (2015) ✓ ✓ ✗ ✓
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incorporates dynamic effects of advertising and estab
lishes the gains from our framework over myopic poli
cies. More broadly, we add to the offline RL literature by 
presenting a model-based BIQFA algorithm and using 
an honest direct method that allows us to further explore 
the mechanism behind the gains from a dynamic policy 
and adds to the interpretability of our framework.

3. Setting and Data
3.1. Setting
Our data come from a leading mobile in-app advertis
ing network of a large Asian country that had more 
than 85% of the market share around the time of this 
study. Figure 3 summarizes most key aspects of the 
setting. We number the arrows in Figure 3 and explain 
each step of the ad allocation process in detail:
• Step 1: The ad network designs an auction to sell 

ad slots. In our setting, the ad network runs a quasi- 
proportional auction with a cost-per-click payment scheme. 
As such, for a given ad slot and a set of participating ads 
A with a bidding profile (b1, b2, : : : , b|A|), the ad slot is al
located to ad a with the following probability:

π0(b; m) � bama
P

j∈A bjmj
, (1) 

where ma is ad a’s quality score, which is a measure 
that reflects the profitability of ad a. The ad network 
does not customize quality scores across auctions. The 
subscript 0 in π0 refers to the fact that this is the baseline 
allocation policy through which our data are generated. 
The payment scheme is cost-per-click, similar to Goo
gle’s sponsored search auctions. That is, ads are first 
ranked based on their product of bid and quality score, 
and the winning ad pays the minimum amount that 
guarantees their rank if a click happens on their ad.
• Step 2: Advertisers participating in the auction 

make the following choices: (a) design of their banner, 

(b) which impressions they want to target, and (c) how 
much to bid. Figure 3 shows an example of an auction 
with four different ads.
• Step 3: Whenever a user starts a new session in an 

app (we use a messaging app in Figure 3 as an exam
ple), a new impression is being recognized, and a 
request is sent to the publisher to run an auction.
• Step 4: The auction takes all the participating ads 

into account and selects the ad probabilistically based 
on the weights shown in Equation (1). All the partici
pating ads have the chance to win the ad slot. This is in 
contrast with more widely used deterministic mechan
isms like second-price auctions, where the ad with the 
highest product of bid and quality score always wins 
the ad slot.
• Step 5: The selected ad is placed at the bottom of 

the app, as shown in Figure 3.
• Step 6: Each ad exposure lasts one minute. During 

this time, the user makes two key decisions: (a) whether 
to click on the ad and (b) whether to stay in the app or 
leave the app and end the session. If the user clicks on 
the ad, the corresponding advertiser has to pay the 
amount determined by the auction. After one minute, if 
the user continues using the app, the ad network treats 
the continued exposure as a new impression and repeats 
steps 3 to 6 until the user leaves the app. We assume that 
a user has left the app when the time gap until the next 
exposure exceeds five minutes. Consistent with this defi
nition, we define a session as the time interval between 
the time a user comes to an app and the time that user 
leaves the app.6

3.2. Data
We have data on all impressions and clicks for the one 
month from September 30, 2015, to October 30, 2015. 
Overall, we observe 1,594,831,699 impressions with 
the following raw inputs for each impression: (1) time
stamp, (2) app ID, (3) user ID (Android Advertising 
ID), (4) GPS coordinates, (5) targeting variables that 
include the province, app category, hour of the day, 
smartphone brand, connectivity type, and mobile ser
vice provider (MSP), (6) ad ID,7 (7) bid submitted by 
the winning ad, and (8) the click outcome. Impor
tantly, our data come directly from the platform so we 
have access to all the information that the platform 
collects. Furthermore, we observe all the variables that 
advertisers can possibly use for targeting. Hence, we 
can overcome typical issues related to unobserved con
founding due to the unobservability of ad assignments.

For our study, we use a sample of our full data that 
reflects the main goals of this paper. Because we want 
to optimally sequence ads within the session, our opti
mal intervention depends on users’ history. As such, 
we only focus on users for whom we can use their 
entire history. The challenge is that no variable in our 
data identifies new users. As illustrated in Figure 4, 

Figure 3. (Color online) Visual Schema of Our Setting 
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our approach is to split our data into two parts based 
on a date (October 22) and keep users who are active in 
the second part of the data (October 22 to October 30), 
but not in the first part (September 30 to October 22). 
This sampling scheme guarantees that the users who 
are identified as new users have not had any activity in 
the platform at least for the three weeks prior to that. 
We drop all the other users from our data.

Next, we only focus on the most popular mobile app 
in the platform, a messaging app that has more than a 
30% share of total impressions. As such, we drop new 
users who do not use this app. There are a few reasons 
why we focus on this app. First, this is the only app 
whose identity is known to us. Second, we expect the 
sequencing effects to be context dependent, so focusing 
on one app helps us perform a cleaner analysis. Finally, 
it takes users a relatively long time to learn how to use 
certain apps (e.g., games), and learning effects can inter
fere with sequencing effects. However, this messaging 
app is widely popular in the country and easy to use, so 
we expect users to pay more attention to ads from the 
beginning.

Overall, our sampling procedure gives us a total of 
8,031,374 impressions shown to a set of 84,306 unique 
new users. More than 40% of these users use other apps 
in addition to the messaging app. In our data, there are 
1,177,422 unique sessions entirely inside the focal mes
saging app that correspond to 6,357,389 impressions. 
We only focus on the impressions shown in the messag
ing app for our analysis. However, we use impressions 
shown in other apps for feature generation. Finally, it is 
worth noting that our sample is almost identical to that 
of Rafieian and Yoganarasimhan (2022b).8 We refer the 
interested reader to that paper for further description of 
the data.

3.3. Summary Statistics
3.3.1. User-Level Variables. As discussed earlier, we 
sample users for whom we have the entire past history. 
As such, we can calculate different metrics over the 
entire user history and present a summary of these 
metrics across users. We focus on five variables and com
pute them using the sample of 8,031,374 impressions. 
We present these statistics in Table 2. We find that, on 
average, a user has participated in 16.23 sessions, seen 
95.26 impressions and 13.97 distinct ads, and clicked 1.55 
times on these impressions. Furthermore, the average 
CTR for a user is roughly 2%, ranging from 0% to a CTR 
as high as 15%. Overall, we observe a large standard 
deviation and a wide range for all these variables. For 
example, although the median number of impressions a 
user has seen is 40 in our data, there is a user who has 
seen 7,259 impressions. Thus, these statistics suggest sub
stantial heterogeneity in user behavior that we aim to 
understand in our framework.

3.3.2. Distribution of Session-Level Outcomes. Our 
goal in this paper is to examine how much we can 
improve session-level user engagement through opti
mal sequencing of ads. As such, the key outcomes are 
defined at the session level. We use the sample for the 
focal app to compute the empirical cumulative density 
function (CDF) of two main outcomes of interest in this 
study: the total number of clicks made in a session and 
session length. Figure 5(a) shows the empirical CDF for 
the total number of clicks per session, which is our pri
mary outcome of interest. As expected, most sessions 
end with no clicks on ads shown within the session, and 
the percentage of sessions with at least one click 
amounts to 6.66%. This is a reasonably high percentage 
in this industry. Interestingly, there are sessions with 

Figure 4. (Color online) Schema for Identification of New Users 

Table 2. Summary Statistics of the User-Level Variables

Variable Mean Standard deviation Minimum Median Maximum

Number of sessions 16.23 20.80 1 9 260
Number of impressions seen 95.26 165.62 1 40 7,256
Variety of ads seen 13.97 11.82 1 11 114
Number of clicks made 1.55 2.23 0 1 20
Click-through rate (CTR) 0.02 0.03 0 0.01 0.15
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more than one click. Further exploration suggests that 
these sessions are typically much longer than other ses
sions, with an average length of more than 15 exposures.

In Figure 5(b), we show the empirical CDF of ses
sion length, as measured by the number of exposures 
shown within any session. This figure shows that 
around 50% of all sessions end in only two exposures. 
Furthermore, the empirical CDF in Figure 5(b) shows 
that the vast majority of sessions last for 10 or fewer 
exposures, and only a tiny fraction of them last for 30 
or more exposures.

To better understand these two session-level out
comes, we focus on the outcomes at the exposure level: 
users’ decision to click on an ad and leave the session. 
These decisions determine the transition dynamics of 
our problem. In Online Appendix A.1, we visualize 
the observed proportion of different transition possi
bility from one exposure to the next, across exposure 
numbers. Importantly, we find that the click decision 
does not necessarily lead to the leave decision.

3.3.3. Shares of Ads. Overall, we observe a total of 328 
ads shown in our sample for the focal app. These ads 
have different shares of total impression, with some hav
ing a much higher share than others. In Online Appen
dix A.2, we show how each ad in our study constitutes a 
different fraction of total impression. In particular, we 
sort these ad shares in our data and demonstrate that top 
15 ads account for roughly 70% of the impressions in our 
data. We later use this information when specifying the 
setting of our framework.

4. Framework for Adaptive 
Ad Sequencing

We now present our dynamic framework for the se
quencing of ads. We start with the theoretical setup of 
our model in Section 4.1. We then use our theoretical 

setup to identify and address challenges in empirically 
designing the optimal policy in Section 4.2. Next, we 
discuss how we evaluate a policy using the data at 
hand in Section 4.3. Finally, in Section 4.4, we describe 
the implementation of our framework and the practical 
challenges that may arise.

4.1. Theoretical Setup
We begin by describing the theoretical setup of our frame
work. Let i denote the session, and t denote each impres
sion in that session, for example, t � 1 refers to the first 
impression in a session. We perform our optimization at 
the session level, where each decision-making unit is an 
impression. As discussed earlier, our goal is to develop a 
dynamic framework that (1) captures the intertemporal 
tradeoffs in a publisher’s ad placement decision in a ses
sion and (2) uses both presession and adaptive session- 
level information to personalize the sequence of ads for 
the user in any given session. An MDP gives us a general 
framework to characterize the publisher’s problem and 
incorporate the two main goals. An MDP is a five-tuple 
〈S,A, P, R,β〉, where S is the state space, A is the action 
space, P is the transition function, R is the reward func
tion, and β is the discount factor. We describe each of 
these five elements in our context as follows: 
• State Space (S): The state space consists of all the 

information the publisher has about an exposure, which 
affects the publisher’s decision at any time period. The 
publisher can take two pieces of information into ac
count: (1) presession information and (2) session-level 
information. Presession information contains any data 
on the user up until the current session, including the 
user’s demographic variables and behavioral history. 
For any session i, we denote the presession state vari
ables by Xi. It is important to notice that the presession 
variables are not adaptive, that is, it does not change 
within the session, so we can drop the t subscript. On 

Figure 5. (Color online) Empirical CDF of the Session Length and Total Number of Clicks per Session 

(a) (b)

Notes. (a) Number of clicks per session. (b) Session length (number of exposures).
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the other hand, session-level variables are adaptive and 
change within the session. Unlike the conventional 
approach in MDP that restricts the state to represent 
only the previous time period, we consider the entire 
sequence of ads and users’ decisions within the session. 
That is, for any exposure t in session i, we define Gi,t as 
the set of session-level state variables as follows:

Gi,t � 〈Ai,1, Yi,1, Ai,2, Yi,2, : : : , Ai,t�1, Yi,t�1〉, (2) 

where Ai,s denotes the ad shown in exposure number s 
and Yi,s denotes whether the user clicked on this ad (s < t). 
As a result, Gi,t is the sequence of all ads and actions within 
the session up to the current time period. Overall, we 
define the state variables as Si,t � 〈Xi, Gi,t〉, that is, a combi
nation of both presession and session-level variables.
• Action Space (A): The action space contains the set 

of actions the publisher can take. In our case, this action 
is to show one ad from the ad inventory every time an 
impression is recognized. As such, A is the entire ad 
inventory in our problem.9
• Transition Function (P): This function determines 

how the current state transitions to the future state, 
given the action made at that point. As such, we can 
define P : S ×A × S→ [0, 1] as a stochastic function 
that calculates the probability P(s′ | s, a), where s, s′ ∈ S 

and a ∈A. This is a crucial component of an MDP 
because publishers cannot control the dynamics of the 
problem if the next state is not affected by the current 
decision. In Section 4.1.1, we discuss the components of 
the transition function in our problem in detail.
• Reward Function (R): This function determines the 

reward for any action a at any state s. As such, we can 
define this function as R : S ×A→ R. This function can 
take different forms depending on the publisher’s ob
jective. In our case, because the publisher is interested 
in optimizing user engagement, they can use different 
metrics that reflect user engagement, such as the proba
bility that the user clicks on the ad. In Section 4.1.2, we 
discuss our choice of reward function in greater details.
• Discount Factor (β): The rate at which the publisher 

discounts the expected future rewards. Given the short 
time horizon of the optimization problem, a risk-neutral 
publisher must value the current and expected future 
rewards equally, indicating that β is very close to one.

With all these primitives defined, we can now write 
the publisher’s maximization problem as follows:

arg max
a
[R(s, a) + βEs′ |s,aV(s′)], (3) 

where V(s′) is the value function incorporating expected 
future rewards at state s′ if the publisher selects ads opti
mally. Following Bellman (1966), we can write this value 
function for any state s ∈ S as follows:

V(s) �max
a

R(s, a) + βEs′|s,aV(s′): (4) 

In summary, as shown in Equation (3), the optimiza
tion problem consists of two key elements: the current 

period reward and the expected future rewards. The 
publisher chooses the ad that maximizes the sum of 
these two elements.

4.1.1. Transition Function. We now characterize the 
law-of-motion, that is, how state variables transition 
given the publisher’s action at any point. As mentioned 
earlier, we are interested in the probability of the next 
state being s′, given that action a is taken in state s, that 
is, P(s′ | a, s). Suppose that the user is in state Si,t �
〈Xi, Gi,t〉 at exposure t in session i. The only time-varying 
factor in Si,t that can transition is Gi,t, which is the history 
of the sequence. Given the definition of Gi,t in Equation 
(2), we can determine the next state if we know the user’s 
decision to click on the current ad and/or continue stay
ing in the session. There are three mutually exclusive 
possibilities for state transitions: 
• Case 1 (click and stay): If the user clicks on ad Ai,t 

and stays in the session, we can define the next state as 
follows:

Si,t+1 � 〈Xi, Gi,t, Ai,t, Yi,t � 1〉, (5) 

where Yi,t � 1 indicates that the user has clicked on 
the ad shown in exposure number t.
• Case 2 (no click and stay): If the user does not click 

on ad Ai,t and stays in the session, we can similarly 
define the next state as follows:

Si,t+1 � 〈Xi, Gi,t, Ai,t, Yi,t � 0〉, (6) 

where Yi,t � 0 indicates that the user has not clicked 
on the ad shown in exposure number t.
• Case 3 (leave): Regardless of user’s clicking out

come, if the user decides to leave, the entire session is 
terminated and there is no more decision to be made. 
Thus, we can write

Si,t+1 � ø: (7) 

Figure 6 visually presents the three possibilities pre
sented here. This figure illustrates an example where 
the publisher shows an ad in the fourth exposure in a 
session. It shows three possibilities and how each 
forms the next state. Based on this characterization, 
we can now define the transition function for any pair 
of action and state as follows:

P(Si,t+1 | a, Si,t)

�

(1� P(Li,t � 1 | a, Si,t))

P(Yi,t � 1 | a, Si,t) Case 1, Equation (5)
(1� P(Li,t � 1 | a, Si,t))

(1� P(Yi,t � 1 | a, Si,t)) Case 2, Equation (6)
P(Li,t � 1 | a, Si,t) Case 3, Equation (7)
0 otherwise:

8
>>>>>>>><

>>>>>>>>:

(8) 
Equation (8) illustrates the two nondeterministic compo
nents of state transitions: click and leave probabilities. As 
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such, estimating these two outcomes would be equiva
lent to estimating transition functions. In Section 4.2, we 
discuss our approach to obtain these estimates.

4.1.2. Reward Function. Another piece of an MDP that 
needs to be defined is the reward function. The reward 
function can take different forms depending on the pub
lisher’s objective. We primarily focus on maximizing the 
total number of clicks per session as our main objective 
because of a few reasons. First, clicks are the main 
source of revenue for the publisher because the adver
tiser only pays when a click happens. Second, almost all 
ads in our study are mobile apps whose objective is to 
get more clicks and installs. In the literature, this type of 
ad is referred to as performance ads, and their match 
value is generally assumed to be the probability of click 
(Arnosti et al. 2016). Hence, clicks are particularly good 
measures of user engagement with ads in our setting. 
Third, clicks are realized immediately in the data and 
well recorded without measurement error.

Given that publishers want to maximize the number 
of clicks made per session, we can define the reward 
function as the probability of click for a pair of state and 
action. For exposure number t in session i, we can write

R(Si,t, a) � P(Yi,t � 1 | a, Si,t): (9) 

This is the probability of clicking on ad a if shown in 
the current state.

4.2. Empirical Strategy for Policy Identification
In this section, we discuss how we can take our theo
retical framework to data and identify the policy that 
maximizes the expected rewards for each session, as 
characterized in our MDP. To do so, we first formally 
define a policy as follows.

Definition 1. A policy is a mapping π : S ×A→ 0, 1[ ], 
that assigns a probability π(a | s) to any action a ∈A 

taken in any given state s ∈ S.

This definition of policy allows for both deterministic 
and nondeterministic policies.10 We now characterize 
our main goal in this section: We want to use our data 

to identify a policy π∗ that maximizes the expected 
rewards for a session. That is, from the beginning to the 
end of a session, this policy determines which ad to 
show in each exposure to maximize the expected sum 
of rewards in that session. Following our MDP charac
terization, the optimal action at any given point is deter
mined as follows:

arg max
a∈Ai,t
[R(Si,t, a) + βESi,t+1 |Si,t,aV(Si,t+1)], (10) 

where Ai,t is the ad inventory, and Si,t is the state vari
able at exposure t in session i. Solving the optimiza
tion problem in Equation (10) for each possible state 
gives us the optimal policy function π∗.

To solve the dynamic programming problem defined 
in Equation (10), we face three key challenges: 
• First, we need to obtain personalized estimates of 

the two unknown primitives in Equation (10): click and 
leave probabilities. That is, for any pair of state vari
ables and ad, we need to accurately estimate the proba
bility of click and leave. We discuss our solution to this 
challenge in Section 4.2.1.
• Second, our optimization is over the set of all ads. 

As such, even if we develop models that obtain person
alized estimates of click and leave outcomes with high 
predictive accuracy for ads that are shown in our data, 
there is no guarantee that these models provide accurate 
estimates for the set of all possible ads (i.e., counterfac
tual ads). Thus, we need a framework with counterfac
tual validity. We describe our solution to this challenge 
in Section 4.2.2.
• Third, although it is, in principle, sufficient to have 

the estimates of reward and transition probabilities to 
find value functions, such an exact solution is not com
putationally feasible in our setting where the state space 
is high dimensional and grows exponentially in the num
ber of time periods. Hence, we need an approximate 
solution that is scalable. We discuss our solution to this 
scalability issue in Section 4.2.3.

4.2.1. Personalized Estimation of Model Primitives. We 
start with our first challenge and formalize it as follows.

Figure 6. (Color online) Example Illustrating the State Transitions 
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Challenge 1. Let D � {(Si,t, Ai,t, Yi,t, Li,t)}i,t denote the 
sample of impressions available, where the click and leave 
outcomes are recorded for each impression as Yi,t and Li,t, 
respectively. We want to estimate functions l̂ and ŷ that 
take a pair of state variable (Si,t) and action (Ai,t) as input 
and returns personalized estimates of expected click and 
leave probabilities as follows:

ŷ(Si,t, Ai,t) � E(Yi,t | Si,t, Ai,t), (11) 

l̂(Si,t, Ai,t) � E(Li,t | Si,t, Ai,t): (12) 

To address this challenge, we need a function that can 
differentiate between impressions given the available 
information. Because this is an outcome prediction 
task, we need to use machine learning methods that 
do not impose restrictive parametric assumptions and 
capture more complex relationships between the cov
ariates and outcomes (Mullainathan and Spiess 2017). 
Furthermore, to allow a machine-learning algorithm to 
differentiate between impressions, it is essential to 
generate a rich set of covariates or features to represent 
impressions. Thus, our task becomes one of feature 
engineering where we want to use our domain knowl
edge to map 〈Si,t, Ai,t〉 to a set of meaningful features 
that help us predict both click and leave outcomes.

We first define four feature categories: (1) timestamp 
and the ad shown in the impression that constitute the 
contextual information about the impression, (2) demo
graphic features that are raw inputs about the user that 
are recorded by the platform, such as user’s location and 
smartphone brand, (3) historical features that contain 
the information about the user’s behavioral history up 
until the current session, such as the number of im
pressions the user has seen in prior sessions, and (4) 
session-level features that only use the information from 
the current session, such as the variety of previous ads 
shown in the session. Figure 7 provides an overview of 
our feature categorization. In this example, the user is at 
her fourth exposure in her third session. The features for 
this particular exposure include the observable demo
graphic features, historical features generated from the 
prior sessions, and session-level features that are gener
ated from the first three exposures shown in the current 
session.11

Our feature generation framework borrows from the 
literature on the advertising dynamics and behavioral 
mechanisms underlying these dynamics. Because the 
raw inputs for historical and session-level features are a 
user’s past interactions with ads, we use features that 
summarize each user’s long- and short-term interac
tions with each ad in terms of frequency akin to good
will stock models (Nerlove and Arrow 1962, Dubé et al. 
2005), recency or spacing according to memory-based 
models (Sawyer and Ward 1979, Sahni 2015), and clicks 
that have been shown to greatly help with the task of 
click prediction (Rafieian and Yoganarasimhan 2021). 
Although we use the literature to inform our feature 
generation, we take an agnostic approach and let our 
learning algorithm flexibly capture these relationships. 
We store these features in large inventory matrices 
where rows are sessions and columns are ads. This 
parsimonious yet rich inventory-based summarization 
allows us to generate other features such as ad variety 
and diversity as they are determined by the frequency 
of all ads. We further include other usage-based fea
tures such as average session length or time interval 
between sessions to predict the leave outcome more 
accurately based on the past data. Overall, our feature 
generation framework takes 〈Si,t, Ai,t〉 and gives us a set 
of features g(Si,t, Ai,t) for each impression that we can 
use as inputs of our learning algorithm. We present the 
details of all these features in Online Appendix B.

4.2.2. Counterfactual Validity. Our second challenge 
comes from the policy aspect of our framework: Not 
only do we need to obtain personalized estimates of 
click and leave outcomes for impressions shown in 
our data, but we also need to estimate these outcomes 
for counterfactual ads that are not shown in the data. 
One immediate solution is to apply our feature gener
ation framework to counterfactual impressions and 
use our learning algorithm to estimate the outcomes. 
However, this approach can run into two key pro
blems. First, although machine learning algorithms 
are known to do well in the task of interpolation, we 
need further guarantees on the feasibility of our coun
terfactual impressions for the task of extrapolation, 
that is, counterfactual estimation. Second, suppose the 

Figure 7. (Color online) Visual Schema for Our Feature Categorization 
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ad assignment is confounded by an unobserved factor 
that is not in our feature set. In that case, the learning 
algorithm may incorrectly learn the link between the 
unobserved variable and outcomes as an ad effect. 
This is similar to the issue of endogeneity or selection 
on unobservables in the causal inference literature. 
We formally present these two challenges as follows.

Challenge 2. Suppose the predictive models ŷ and l̂ are 
trained on data D � {(Si,t, Ai,t, Yi,t, Li,t)}i,t. Let Dc � {

[

a∈Ai,t 
(Si,t, a, Yi,t, Li,t)}i,t denote the counterfactual data set. To 
ensure the counterfactual validity of our estimates on the cou
terfactual data, we need to address the following challenges: 

1. For any ad a ∈Ai,t, the data point with the pair of state 
variable and action (Si,t, a) and the corresponding set of fea
tures g(Si,t, a) could have been generated in our training data 
D, so finding values of ŷ(Si,t, a) and l̂(Si,t, a) is a form of 
interpolation.

2. For any ad a ∈Ai,t, the assignment probability only 
depends on the observed set of features used in training mod
els ŷ and l̂.

To satisfy the first condition in Challenge 2, we need 
to identify the feasibility set Ai,t for each impression 
such that any ad a ∈Ai,t could have been shown in that 
impression. This is equivalent to the overlap or positiv
ity assumption in the causal inference literature that 
requires each treatment condition (ad in our case) to 
have a nonzero propensity score. That is, if e(Si,t, a)
denotes the propensity of ad a to be shown in exposure 
t in session i, we must have e(Si,t, a) > 0 for any a ∈Ai,t. 
Although attainable in principle, this is a condition 
that is rarely satisfied in most nonexperimental digital 
advertising settings because ads are selected through a 
deterministic allocation rule in commonly used auctions 
such as second-price. In our setting, however, the plat
form uses a quasi-proportional auction that induces ran
domization in ad allocation: Each ad has a nonzero 
propensity score if and only if it participates in an auc
tion. As such, the propensity score is zero only when the 
ad is not participating in an auction due to their targeting 
decision or campaign availability. We use a filtering strat
egy similar to that in Rafieian and Yoganarasimhan (2021), 
where for each impression, we filter out ads that could have 
never shown. The remaining ads constitute our feasibility set 
Ai,t, which is generally a rich set of ads given the low level 
of targeting in our platform. We present the details of our 
filtering strategy in Online Appendix C.1.

The second condition in Challenge 2 also has a 
strong link to the causal inference literature. Although 
this is a predictive task, our learning algorithm may 
still incorrectly learn the ad effects if there is any unob
served confounding. For example, suppose ad a1 is 
more likely to be shown to less-educated adults than 
ad a2, but we do not observe education in our data. 
Now, if less-educated adults have a higher probability 

of click, our learning algorithm may attribute the link 
between education and click to ads a1 and a2, if it does 
not control for education. Unconfoundedness is what 
satisfies this condition. That is, conditional on obser
ved features g(Si,t, a), the assignment to ads is random. 
We can formally show this as a proposition in our data 
as follows.

Proposition 1. In a setting with a quasi-proportional auc
tion and observable targeting, the distribution of propensity 
scores is fully determined by observed covariates.

Proof. Please see Online Appendix C.2. w

To provide empirical support for this proposition, we 
estimate propensity scores using observed features and 
assess covariate balance (see Online Appendix C.3). We 
then include these propensity scores ê(Si,t, a) in our fea
ture set g(Si,t, a) to ensure that the assignment prob
abilities are accounted for. This further guarantees the 
unconfoundedness assumption as the conditional inde
pendence is satisfied only by conditioning on propen
sity scores (Rosenbaum and Rubin 1983).

4.2.3. Value Function Approximation. Now, we dis
cuss the final piece of our empirical framework to 
develop an optimal dynamic policy. Recall the pub
lisher’s optimization problem in Equation (10):

arg max
a∈Ai,t
[R(Si,t, a) + βESi,t+1 |Si,t,aV(Si,t+1)]:

In Sections 4.2.1 and 4.2.2, we show how we can get 
the reward R(Si,t, a), as well as the law of motion as 
captured by the expectation ESi,t+1 |Si,t,a from the previ
ous equation. The unknown part is the value function 
V that captures future rewards. We can use Bellman 
equation to characterize this value function in a recur
sive relationship as follows:

V(Si,t) � max
a∈Ai,t

R(Si,t, a) + βESi,t+1 |Si,t,aV(Si,t+1): (13) 

Because we know the reward function and law of 
motion, the typical approach to find the value func
tion is to construct a table of all states and directly 
find values using Equation (13). However, this task 
becomes infeasible when we have a high-dimensional 
state space, as we need to store all the corresponding 
values. We can formally characterize the computa
tional intensity of this task as follows.

Challenge 3. Let T denote the length of the horizon over 
which we want to perform our optimization, and let N denote 
the number of sessions. For each session, our state space grows 
exponentially in T. Specifically, for a single session i, the order 
of state variables would be O((2 |Ai,1|)

T�1
), because we need 

to record the entire ad sequence and actions (click or not 
click). Thus, for all sessions the complexity order would be 
O((2maxi |Ai,1|)

T�1
×N), where |A| is the size of our ad 

inventory.
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To put things in perspective, even if we only have 
10 ads in our inventory and want to perform the 
dynamic optimization for 10 periods, each session has 
the complexity order of 109. Now, if we want to that 
for the number of sessions in our data that is roughly 
one million, the order of complexity would be 1015. As 
such, conventional tabular solutions in the marketing 
and economics literature cannot work in our problem.

To address this challenge, we turn to the literature 
on value function approximation in dynamic program
ming and RL (Sutton and Barto 2018). Our solution is 
to develop a function approximation algorithm that 
approximates the value function instead of finding all 
the values directly. That is, we want to learn a function 
v̂ : S→ R with a set of parameters θv. This approach 
can significantly reduce the time complexity because 
we need only an order of magnitude smaller subset of 
states to learn a function, and the representation of this 
function is only through the set of parameters θv.

Before we present our algorithm, we first introduce 
a new notation. We define a function Q : S ×A→ R to 
represent the entire term that the publisher maximizes 
in Equation (10) as follows:

Q(Si,t, a) � R(Si,t, a) + βESi,t+1 |Si,t,aV(Si,t+1): (14) 

The Q function is often referred to as the choice- 
specific value function in the econometrics literature 
(Aguirregabiria and Mira 2002). Given the Bellman 
equation in Equation (13), we can write

Q(Si,t, a) � R(Si,t, a) + βESi,t+1 |Si,t,a max
a′∈Ai,t+1

Q(Si,t+1, a′): (15) 

Now, we can use our transition function in Equation (8) 
and plug in our estimates for click and leave probabilities 
to define Q̃t in a similar way to Equation (15) as follows:

Q̃t(Si,t, a) � ŷ(Si,t, a) + (1� l̂(Si,t, a))ŷ(Si,t, a)

max
a′∈Ai,t+1

Q̃t+1(〈Si,t, a, Yi,t � 1〉, a′)

+ (1� l̂(Si,t, a))(1� ŷ(Si,t, a))

max
a′∈Ai,t+1

Q̃t+1(〈Si,t, a, Yi,t � 0〉, a′), (16) 

where the first term ŷ(Si,t, a) is the current period 
reward, and the other two elements in the right-hand 
side (RHS) of Equation (16) capture the two transition 
possibilities where the session still continues: “click 
and stay” and “no click and stay”.

Function Q̃t represents a plugin version of our Q 
function in Equation (14) at time period t, where we 
directly plug in our reward and transition estimates to 
find the Q values.12 Our goal is to estimate a function q̂t 
that approximates Q̃t. However, this task is not trivial as 
these functions appear in both the left-hand side (LHS) 
and RHS of Equation (16). We can follow the common 
insight in the literature to formulate an iterative procedure 

such as value iteration or backward induction to simplify 
the task to supervised learning. In our framework, we 
focus on backward induction as it is reasonable to assume 
a finite horizon because most sessions end in a few expo
sures. Furthermore, for a short length of horizon T, the 
backward induction algorithm runs faster than a value 
iteration algorithm because value iteration may require 
far more iterations for convergence.

The logic behind backward induction for q-function 
approximation (BIQFA) is simple: From the set of 
{q̂1, q̂2, : : : , q̂T}, we learn the functions one at a time in 
a backward order. We start with the last time period T 
where the function q̂T is equivalent to our click prediction 
function ŷ because this is the last period and the future 
rewards are assumed to be zero.13 We can then complete 
the RHS of Equation (16) and obtain the plugin outcomes 
for any subset of states in period T – 1. These plugin out
comes are often referred to as Bellman backups and 
denoted by Q̃ (Lee et al. 2021). Once we have these plugin 
outcomes, the task of estimating q̂T�1 simplifies to one of 
supervised learning, where we can use our set of state 
variables and actions to estimate the plugin outcomes or 
Bellman backups. We can continue this process until we 
have the full set of functions {q̂1, q̂2, : : : , q̂T}.

Before we present our algorithm in detail, we define 
the set of inputs and outputs of the algorithm. Let S̃t 
denote a subsample of the state space at exposure t. 
The algorithm takes data D, functions of click, leave, 
and propensity score estimates (ŷ, l̂, ê), length of hori
zon (T), and subsamples of the full state space at each 
exposure (S̃t for all t ≤ T) as inputs, and return the set 
of q-functions (q̂t for all t ≤ T) as outputs. Our BIQFA 
algorithm is presented in detail in Algorithm 1.

Algorithm 1 (BIQFA)
Input: D, ŷ, l̂, ê, T, S̃1, S̃2, : : : , S̃T . S̃t ⊂ S at exposure t
Output: q̂1, q̂2, : : : , q̂T 

1: q̂T← ŷ
2: for t � T� 1→ 1 do
3: Q̃t+1← q̂t+1
4: for each s ∈ S̃t, a ∈A do
5: Q̄s,a← Q̃t(s, a) . Create Bell

man backups using Equation (16)
6: if ê(s, a) � 0 then
7: Q̄s,a � 0
8: end if
9: Zs,a←{g(s, a), ŷ(s, a), l̂(s, a)} . Set of in

puts given to the learning algorithm
10: end for
11: q̂t← learn(Zs,a, Q̄s,a) . Any learn

ing algorithm can be used
12: end for

A few details are worth noting about our BIQFA 
algorithm. First, the time-saving component of our 
approximation framework is in sampling S̃t from the 
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full state space S. As such, we want |S̃t | to be not 
very large but representative of states that would 
be generated under the optimal dynamic policy, so 
the algorithm can learn a good approximation of the 
q-function at a reasonable computational cost.14 How
ever, the challenge is that we do not know the distri
bution of states under the optimal dynamic policy 
before running the algorithm. Therefore, we need a 
good initialization that is close to the distribution of 
states under the optimal dynamic policy. A good can
didate is to use an adaptive myopic policy that selects 
the ad with the highest reward at any point (i.e., 
arg maxa∈Ai,t ŷ(Si,t, a) for any state variable Si,t), which 
is a special case of optimal dynamic policy when β � 0. 
As a result, the distribution of this policy is likely close 
to that of optimal dynamic policy so we use a sample of 
states under the adaptive myopic policy for initializa
tion.15 The exact size of each |S̃t | can be set a priori by the 
researcher or through a validation procedure described 
in Online Appendix D.1. Second, although our set of gen
erated features g(s, a) suffices in principle for learning 
q-functions, we include click and leave predictions as fea
tures to help the learning algorithm capture the dynamic 
structure more easily. As such, the specific input of q̂ 
functions is Zs,a, which contains the generated features 
and click and leave estimates (line 9 of our algorithm). 
Third, given that we use propensity scores in our feature 
set Zs,a, the learning algorithm easily learns the associa
tion between zero propensity and zero Bellman backup.

Last, we discuss the convergence properties of our 
BIQFA algorithm. The idea of value function approxima
tion has been around since Samuel (1959) and Bellman 
and Dreyfus (1959), and many algorithms have been pro
posed for this task to this date with significant practical 
success (Mnih et al. 2015, Sutton and Barto 2018). The 
early theoretical studies on the convergence properties of 
function approximation are Gordon (1995) and Tsitsiklis 
and Van Roy (1996), who show under what conditions 
we have convergence. The main issue is that most of 
these requirements for convergence are violated when 
we use more high-capacity learners such as deep learn
ing or XGBoost, and it is easy to show divergence using 
counterexamples (Levine et al. 2020). However, some re
cent studies show that using these high-capacity function 
approximators generally tend to converge in practice, as 
they correspond to a very large class of functions (Van 
Hasselt et al. 2018, Fu et al. 2019). In the absence of theo
retical convergence guarantees on our algorithm, we pre
sent some results in Online Appendix D.2 to establish its 
strong performance in our data.

In sum, our BIQFA algorithm approximates the set 
of q̂1, q̂2, : : : , q̂T needed to identify the adaptive ad 
sequencing policy. It is important to notice that like 
other function approximation methods in the literature, 
the computational complexity of our BIQFA algorithm 

is not exponential. Increasing the length of horizon 
only increases the computational complexity of our al
gorithm linearly as we need to approximate a higher 
number of q̂t. Similarly, increasing the number of ads 
increase the computational complexity polynomially, 
because it changes the number of observations in for 
each t (line 4 of the algorithm), and the dimensionality 
of Zs,a. Therefore, BIQFA is scalable to large T and num
ber of ads. Our BIQFA algorithm differs from the con
ventional approaches in the RL literature such as fitted 
Q-iteration (FQI) in two ways. First, our approach is 
model based; that is, our algorithm uses the model- 
based estimates of the transition function. We use this 
approach because there are probabilistic components 
in state transitions in our problem that have low proba
bility of occurring such as clicks, so a model-free ap
proach would not perform very well in these domain. 
Our model-based estimates of the transition stabili
zes the function approximation procedure. Second, as 
discussed earlier, we use a backward induction solu
tion concept as opposed value iteration. This choice 
allows us to obtain a function approximation in fewer 
iterations.

4.3. Evaluation
Once we identified the optimal dynamic policy for 
adaptive ad sequencing using our empirical framework 
in Section 4.2, we need to evaluate this policy and com
pare it to other benchmarks. As such, we need an evalu
ation framework that takes any policy π∗ and data D as 
input and evaluates the policy in terms of the outcomes 
of interest, specifically the expected number of clicks per 
session. This task is often referred to as counterfactual pol
icy evaluation in the marketing and economics literature 
and off-policy policy evaluation in the RL literature.

The fundamental problem is that the data at hand are 
often generated by a behavior policy πb, which is different 
from the policies we want to evaluate (π∗). In a case like 
that, there are many approaches to evaluate the policy 
π∗. The common approach in marketing and economics 
literature is to use a counterfactual simulation approach, 
where we simulate the data given policy π, using the 
estimates for reward and transition functions (Dubé et al. 
2005, Simester et al. 2006). This approach is often referred 
to as the direct method (DM) in the RL literature as it 
directly uses model estimates to evaluate the policy (Kal
lus and Uehara 2020). An important advantage of this 
approach is that it can capture the heterogeneity at the 
most granular level, which is session level in our case. 
That is, we can evaluate each session under a policy and 
examine which sessions have higher gains. On the other 
hand, the main issue with the DM is that reward and 
transition estimates may be largely biased in the absence 
of randomization, which results in a biased policy evalu
ation. In our setting, we have randomization in ad alloca
tion that satisfies the unconfoundedness assumption. 
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Thus, the typical challenges with the DM approach are 
not present in our setting.

Nevertheless, there is still an important challenge in 
DM when it comes to policy evaluation.

Challenge 4. Let DModel denote the data used for policy 
identification, and DEvaluation denote the data used for policy 
evaluation. If DModel �DEvaluation, then our evaluation al
ways shows a better performance for the identified optimal 
dynamic policy, because our policy identification framework 
chooses a policy if it is best-performing given DModel and 
models trained on it.

This is an important theoretical issue, which is often 
unaddressed in counterfactual policy evaluation in the 
structural econometrics literature. To ensure that our 
imposed structure does not force a certain outcome, we 
follow the insights from the evaluation approach in Man
nor et al. (2007) and double q-learning in Hasselt (2010) 
for de-biasing the value function estimates through sam
ple splitting such that DModel ∩DEvaluation � ø. We call this 
approach honest direct method (HDM) and present it in 
the step-by-step procedure as follows: 
• Step 1: We split the data into three parts: DModel, 

DEvaluation, and DTest.
• Step 2: We use our modeling data DModel to estimate 

functions needed for policy identification: ŷM, l̂
M

, and 
q̂M

t for any t (notice that superscript M refers to the data 
used for estimation). We can use these functions to 
identify the optimal policy πM.
• Step 3: We use our evaluation data to estimate the 

model primitives: probability of click and leave. The 
functional estimates of these primitives are denoted by 
ŷE and l̂

E
. We use these estimates to simulate the data 

under any counterfactual policy, where superscript E 
refers to the fact that we use the evaluation data.
• Step 4: For any session in DTest, we use our policy 

πM from Step 2 and our estimates ŷE and l̂
E 

from Step 3 
to simulate the data under the policy and evaluate its 
outcomes. Although we can run large-scale simulations 
to evaluate the outcome, there is an analytical derivation 
for our HDM. For any exposure t, let gt denote a t-step 
trajectory of states, actions, and rewards as follows:

gt � 〈s1, a1, r1, : : : , st�1, at�1, rt�1, st, at, rt〉, (17) 

where s, a, and r denote state, action (ad), and the 
reward outcome, respectively. The probability of any 
arbitrary gt is determined by the policy πM and transi
tion functions ŷE and l̂

E
. For brevity, we use γE to 

denote the joint distribution of transitions. The trajec
tory gt comes from the joint distribution (πM,γE), 
where the policy comes from Step 2 and transitions 
come from Step 3 to satisfy our honesty criteria, which 
means that the data and models used for policy identifi
cation are different from those used for policy evaluation. 

Now, for any session i with initial state Si,1 and policy 
πM, we can define the policy evaluation function ρ as 
follows:

ρ(πM; Si,1, T) � Egt~(πM,γE)

XT

t�1
βt�1rt

�
�
�
�
�
s1 � Si,1

" #

, (18) 

where T denotes the horizon length and the expecta
tion is taken over all trajectories. Although all trajecto
ries constitute a massively large set, we can develop 
different algorithms to perform this task more effi
ciently and find ρ(πM; Si,1, T). We describe the algo
rithm we use in Online Appendix E.1.

Overall, by splitting our data into three sets, our HDM 
approach overcomes two important issues with a model- 
based evaluation: (1) using a separate test set to perform 
policy evaluation avoids the issues of overfitting, and (2) 
separating the modeling and evaluation data sets ensures 
that the imposed structure of policy evaluation does not 
systematically favor one policy over another. That is, any 
other policy can theoretically outperform our optimal dy
namic policy. Finally, it is worth noting that with a large 
T, this exact evaluation procedure can become computa
tionally intensive for any dynamic policy. A simple solu
tion in these cases is to simulate a few instances for each 
session and take the average outcome.

4.4. Practical Considerations and Implementation
Although our framework is set up more generally to 
be broadly applicable to other domains, there are 
many elements that we need to set given the context, 
such as the length of the horizon or the size of action 
space (ad inventory). We discuss these practical details 
in this section as follows: 
• First, we need to set the length of horizon T. From 

our data, we observe that more than 85% of sessions end 
in 10 or fewer exposures (Figure 5(b)). As such, T � 10 is 
a reasonable choice as the majority of events happen in 
the first ten exposures. However, it is worth emphasiz
ing that the computational complexity increases only lin
early in T in our function approximation framework.
• Second, we need to define the ad inventory. An 

obvious choice would be to focus on our inventory’s 
entire set of ads. Although our framework is computa
tionally scalable to having a large action space, it would 
be practically difficult to obtain accurate, personalized 
estimates for ads with low frequency in data. As a 
result, we only focus on the top 15 ads with the highest 
frequency in our data that collectively generate over 
70% of all impressions.16

• Third, we need to set a splitting rule for DModel, 
DEvaluation, and DTest. We split our data at the user level 
according to an approximately 40-40-20% rule such that 
DTest contains sessions for 20% of users and DModel and 
DEvaluation each represents 40% of users. The specific 
details of our splitting procedure is presented in Online 
Appendix E.2.

Rafieian: Optimizing User Engagement Through Adaptive Ad Sequencing 
924 Marketing Science, 2023, vol. 42, no. 5, pp. 910–933, © 2022 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

26
05

:a
d8

0:
80

:7
01

3:
3c

fb
:f

66
0:

71
2b

:2
c7

0]
 o

n 
12

 S
ep

te
m

be
r 

20
24

, a
t 0

8:
40

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



• Fourth, we need to choose a learning algorithm 
and a validation procedure for the task of estimating 
click and leave outcomes, that is, functions ŷM, l̂

M
, ŷE, 

and l̂
E
. Generally, one could use any learning algo

rithm to estimate these functions. In our study, we use 
the XGBoost method developed by Chen and Guestrin 
(2016), which is a fast and scalable version of boosted 
regression trees (Friedman 2001). There are some key 
reasons why we use XGBoost as our main learning. 
First, it has been shown to outperform most existing 
methods in most prediction contests, especially those 
related to human decision-making like ours (Chen and 
Guestrin 2016). Second, Rafieian and Yoganarasimhan 
(2021) show that in the same context, XGBoost achieves 
the highest predictive accuracy compared with other 
methods. Following the arguments in Rafieian and 
Yoganarasimhan (2021), we use the logarithmic loss as our 
loss function. To tune the parameters of XGBoost, we use a 
hold-out validation procedure to prevent the model from 
overfitting. We select the hyper-parameters accurately 
using a grid search over a large set of hyper-parameters 
and select those that give us the best performance on a 
hold-out validation set. For more details, please see Online 
Appendix F.
• Fifth, for the task of q-function approximation in 

our BIQFA algorithm, we need to specify a learning 
algorithm. For internal consistency, we use XGBoost as 
our learning algorithm.

In sum, the choices above are made not because of the 
limitations in our framework but rather according to the 
specifics of our context. In a different context, one may 
need to change these decisions to get the best out of this 
framework. It is worth noting that our empirical applica
tion does not face the cold-start problem. We separately 
discuss the robustness of our framework to the cold- 
start problem in Online Appendix G by presenting solu
tions to address the problem in Online Appendices G.1 
and G.2.

5. Results
5.1. Predictive Accuracy of Machine 

Learning Models
In this section, we examine the predictive accuracy of 
our click and leave estimation models. We focus on 
two different metrics that capture different aspects of 
the predictive performance: 
• Relative Information Gain (RIG): This metric reflects 

the percentage improvement in logarithmic loss com
pared with a baseline model that simply predicts the 
average CTR for all impressions. We use RIG as our 
primary metric as it is defined based on the log loss, 
which is the loss function we used in our XGBoost 
models to estimate click and leave outcomes.
• Area Under the Curve (AUC): It determines how 

well we can identify true positives without identifying 

false positives. This score ranges from zero to one, and a 
higher score indicates better performance and greater 
classification.

These two metrics are commonly used to evaluate 
the predictive performance of click prediction models. 
In general, RIG is more relevant when we want to 
evaluate how well our model estimates the probabili
ties, whereas AUC demonstrates how good a classifier 
our model is. For both metrics, a higher value means 
better performance.

We now evaluate the predictive performance of our 
click and leave estimation models. As discussed ear
lier in Section 4.3, our honest direct method estimates 
two separate models for each outcome: one using the 
modeling data DModel and the other using the evalua
tion data DEvaluation. This gives us a total of four models 
ŷM, ŷE, l̂

M
, and l̂

E
. We present both RIG and AUC for 

each of these models when evaluated on modeling, 
evaluation, and test samples separately.

We present our results in Table 3. In the top two 
panels, we examine the predictive accuracy of our click 
models. The model achieves a >0.20 RIG on the test 
set, which demonstrates a substantial predictive accu
racy compared with the literature (Yi et al. 2013). Fur
thermore, both in- and out-of-sample, our click models 
achieve an AUC of more than 0.80, which shows a 
good classification performance by the model.

The last two panels in Table 3 show how our leave 
models perform. Unlike our click models, we do not 
expect our leave model to reach a very high predictive 
accuracy because app usage is less dependent on ad 
exposures and more driven by the app. This is parti
cularly challenging for a messenger app where users’ 
decision to leave primarily stems from their messag
ing behavior, which is unobserved to the advertising 
platform. Despite these limitations, both our RIG and 
AUC measures show information gain from our predic
tive model compared with average estimators. Thus, our 
approach to endogenize usage is advantageous over a 
bulk of papers in the literature that rely on simple aver
age estimates for continuation probabilities (Kempe and 
Mahdian 2008, Kar et al. 2015, Sun et al. 2017).17 In 
Online Appendix H, we further explore the contribution 
of different types of features to our predictive models.

5.2. Counterfactual Policy Evaluation
We now use our HDM to evaluate the performance of 
our adaptive ad sequencing framework and compare it 
to competing benchmarks. We refer to the policy devel
oped by our framework as fully dynamic or adaptive for
ward-looking interchangeably throughout. We now define 
a series of competing policies for benchmarking18: 
• Adaptive Myopic Policy: This policy uses all the in

formation available at any exposure and selects the ad 
that maximizes the reward at that point, that is, the 
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highest CTR. This policy is myopic as it ignores the 
expected future rewards and is equivalent to β � 0 in 
our MDP in Equation (10). However, this policy is 
adaptive because it uses the real-time updated session- 
level features as it moves forward. We use this policy as 
the main comparison point for our framework because 
it reflects the standard practice in the advertising indus
try, where the platforms use a version of contextual ban
dit to select the ad at any point (Theocharous et al. 
2015).
• Single-Ad Policy: This policy selects a single ad to 

show for the entire session. As such, this policy is not 
adaptive as it only uses presession information (demo
graphic and historical features) to select the ad with the 
highest CTR. Using this policy as a benchmark is 
important from a managerial standpoint because it 
mimics the practice of using a fixed ad slot as opposed 
to a refreshable ad slot. Furthermore, it highlights the 
value of adaptive session-level information.
• Random Policy: This policy randomly selects an ad 

from the ad inventory at any point. Although this is a 
naïve policy, it is often used in the RL literature as a 
benchmark.

We document the performance of our fully dynamic 
policy and these three benchmarks in terms of differ
ent outcomes in Table 4. We start with the main metric 
of interest in this paper: the expected number of clicks 
per session. This metric determines how many clicks 
each policy generates in total when we multiply it by 
the number of sessions. Our results in the first row of 

Table 4 show that the fully dynamic policy developed 
by our adaptive ad sequencing framework results in 
substantial gains by achieving an expected number of 
0.1671 clicks per session. In particular, the fully dynamic 
policy generates 5.76%, 27.46%, and 79.59% more clicks 
than adaptive myopic, single-ad, and random policies, 
respectively. The gains from our fully dynamic policy 
over the single-ad policy illustrates the opportunity cost 
of using a nonrefreshable ad slot that only shows one ad 
for the entire session. More importantly, the gains from 
our fully dynamic policy over the adaptive myopic policy 
make a compelling case for the use of dynamic optimi
zation and RL in the advertising domain and call for a 
change in the current practice of using myopic frame
works, particularly in cases like ours where users are 
exposed to multiple ads sequentially over a short period 
of time.

Next, we aim to identify the primary source for the 
gains from the fully dynamic policy. As discussed ear
lier, there are two channels through which adaptive 
ad sequencing can create value: (1) by making users 
stay longer, thereby increasing the total number of 
impressions generated (extensive margin), or (2) by 
making each impression more likely to receive a click 
(intensive margin). We test each source using two 
other metrics: expected CTR for each impression and 
expected session length. We find that each impression 
has a significantly higher probability of receiving a 
click, but the increase in usage is only 0.2% compared 
with the adaptive myopic policy. Thus, adaptive ad 
sequencing increases the total number of clicks in a 
session by increasing the response rate to each ad. 
Later, in Section 5.3, we further explore the mecha
nism behind the increase in response rate through 
sequencing.

Finally, we examine how concentrated the ad allo
cation is under each policy. We first calculate the aver
age share of each ad under each policy and then use 
the well-known HHI to measure ad concentration. 
Lower HHI values indicate a lower ad concentration 
and more evenly distributed shares. Naturally, we 
expect the random sequencing policy to have a very 
low HHI as it most evenly distributes ad shares. We 
observe that in the fifth row of our table. Interestingly, 

Table 3. Predictive Accuracy of XGBoost Models for Click 
and Leave Estimation

Model Outcome
Training 
Sample Metric

Sample

DModel DEvaluation DTest

ŷM Click DModel RIG 0.2123 0.1988 0.2021
AUC 0.8229 0.8110 0.8139

ŷE Click DEvaluation RIG 0.2019 0.2175 0.2024
AUC 0.8138 0.8283 0.8138

l̂
M

Leave DModel RIG 0.1009 0.0882 0.0881
AUC 0.7189 0.7055 0.7047

l̂
E

Leave DEvaluation RIG 0.0880 0.1005 0.0877
AUC 0.7051 0.7188 0.7045

Table 4. Performance of Different Sequencing Policies in the Test Data

Metric

Sequencing policies

Fully dynamic Adaptive myopic Single-ad Random

Expected no. of clicks per session 0.1671 0.1580 0.1311 0.0930
Percentage click increase over random 79.59% 69.81% 40.90% 0.00%
Expected CTR (per impression) 4.26% 4.04% 3.43% 2.42%
Expected session length 3.9258 3.9164 3.8246 3.8518
Ad concentration (HHI) 0.2902 0.3178 0.3480 0.1159
No. of users 14,084 14,084 14,084 14,084
No. of sessions 201,466 201,466 201,466 201,466
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we find that our fully dynamic policy results in a lower 
HHI than both adaptive myopic and single-ad policies. 
This is likely because the dynamic policy makes better 
use of synergies between ads, thereby increasing the 
shares for less popular ads. This is an important find
ing because it means that the better performance of 
the fully dynamic policy does not come at the expense 
of less popular ads. The lower ad concentration can 
also have welfare impacts for consumers as they are 
exposed to a more diverse set of ads.

5.3. Interpretation and Mechanism Analysis
In principle, all the differences between the fully dynamic 
and adaptive myopic policies stem from the fact that only 
the former takes into account the expected future re
wards when making a decision. As such, we expect the 
fully dynamic policy to perform better than the adaptive 
myopic policy in later exposures within the session. 
Figure 8 confirms this pattern by breaking down the ex
pected rewards for both policies (Figure 8(a)) and the 
gains from the fully dynamic policy over adaptive myopic 
policy across exposure numbers (Figure 8(b)). Although 
the fully dynamic policy performs worse than the adaptive 
myopic policy in the first two exposures, the gains from 
the fully dynamic policy appear from the third exposure 
onward. The existence of this pattern further highlights 
the value of scalability in our framework that allows us 
to extract value from the later exposures.

In summary, the observed difference in Figure 8 is 
because of the intertemporal tradeoff the fully dynamic 
policy makes as captured by expected future rewards 
in Equation (10), that is, βESi,t+1 |Si,t,aV(Si,t+1). Although 
this additional term in the equation helps achieve a 
better performance, interpretation of it is generally 
very hard as many factors go into the construction of 
value function. Our main goal in this section is to use 
the domain knowledge in advertising to add to the 
interpretability of our framework and share insights 
into the possible mechanisms behind the gains from 

it. First, in Section 5.3.1, we demonstrate the heteroge
neity in gains from using a fully dynamic policy over 
an adaptive myopic policy and find the correlates of 
these session-level gains using the historical features 
for each session. We then quantify the extent of differ
ence between the two policies and show how the his
torical features help explain these discrepancies in 
Section 5.3.2.

5.3.1. Heterogeneity in Gains Across Past Historical 
Features. In this section, we want to better under
stand the heterogeneity in gains from fully dynamic 
over adaptive myopic policy. As such, we need to first 
formally define gains. Let πM

d and πM
m denote the fully 

dynamic and adaptive myopic policies identified using 
the modeling data DModel. For each session i, we use 
Equation (18) to define the variable Gaini as follows:

Gaini �
ρ̂(πM

d ; Si,1, T � 10)
ρ̂(πM

m ; Si,1, T � 10)� 1, (19) 

where ρ̂(πM
d ; Si,1, T � 10) and ρ̂(πM

m ; Si,1, T � 10) repre
sent the expected number of clicks for the first 10 expo
sures of session i with initial state variables Si,1, under 
fully dynamic and adaptive myopic policies, respectively. 
The variable Gaini measures the percentage improve
ment in expected rewards from the fully dynamic over 
adaptive myopic policy for any specific session. Thus, it 
allows us to document the heterogeneity in gains across 
sessions.

We first focus on a simple variable that is available 
prior to any session: the number of previous sessions 
the user has experienced. We want to see how the 
gains change with the number of prior sessions. On 
the one hand, we know that a richer history helps 
learn user preferences more accurately. This can favor 
the fully dynamic policy and increase gains because 
this policy will use more accurate predictions about 
session dynamics (e.g., how long the session will last). 
On the other hand, more experience comes with a 

Figure 8. (Color online) Performance of Fully Dynamic and Adaptive Myopic Policies Across Exposure Numbers 

(a) (b)

Notes. (a) Expected reward over exposure number. (b) Percentage gain over exposure number.
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higher variety of prior ads, which reveals more about 
ad-specific user preferences. This increase in predic
tive accuracy can make the two policies more similar, 
thereby reducing gains. Furthermore, we know a 
higher variety of ads in the past reduces the novelty 
of ad interventions in the present, which can reduce 
the effectiveness of sequencing strategies. For exam
ple, Rafieian and Yoganarasimhan (2022b) show that 
as users become more experienced, the impact of an 
increase in variety decreases. We want to show how 
the mix of the opposing forces described previously 
would shape the overall relationship between the 
number of prior sessions and gains. For all the ses
sions in our test data, we define five quintiles based 
on the number of prior sessions.19 We show the aver
age gains for each quintile in Figure 9. Interestingly, 
we find a U-shaped pattern consistent with the oppos
ing accounts presented above. Later in Section 5.4, we 
show that the U-shaped pattern is robust to alterna
tive specifications.

Inspired by the pattern in Figure 9, we further docu
ment the heterogeneity in gains across a richer set of his
torical covariates. We first include two historical features 
that are correlated with the number of prior sessions and 
correspond to the opposing accounts presented previ
ously: (1) the number of past impressions and (2) the 
variety of ads seen. We expect a positive association in 
the former as it demonstrates the amount of data avail
able, whereas a negative association in the latter as a 
higher variety of ads seen likely makes the policies more 
similar and users less responsive to sequencing. We 
regress gains for each session on these two covariates 
while controlling for user and hour fixed effects to en
sure our estimates do not capture user-level differences 
and supply-side factors such as advertisers’ targeting 
and availability. We exclude the first session for each 
user because the historical features do not exist for those 

sessions. We present the results of this model in the first 
column of Table 5. Our results provide further support 
for the two accounts presented earlier. The coefficient 
for the number of past impressions is positive, whereas 
the coefficient for the variety of ads seen is negative. 
Together, having seen more impressions increases the 
gains, whereas having seen more distinct ads decreases 
the gains.

In columns (2)–(4), we add historical features one 
by one. We first add the number of past clicks prior to 
the current session. A higher value of this covariate 
indicates a greater ad response and overall engage
ment with ads. As shown in the second column of 
Table 5, this covariate has a positive association with 
gains from ad sequencing. Next, we include another 
historical feature: the time since the last session (in 
hours). Higher values of this covariate show lower 
recency in users’ interaction with ads. In general, we 
expect higher recency to reduce the novelty of ad 
interventions, thereby lowering the gains from ad 
sequencing. We confirm this prediction by finding a 
positive coefficient for the time since the last session in 
column (3) of Table 5: The greater the gap is between 
the current session and the last session, the higher the 
gains are from sequencing. Finally, we include the 
length of the last session as another covariate in our 
model. This covariate is a signal for the length of the 
current session. As shown in Figure 8, gains from 
sequencing appear later in a session. Hence, when the 
session is longer, we expect the gains to be higher. 
The positive and statistically significant coefficient for 
the length of last session in the fourth column of Table 5
provides support for this prediction.

5.3.2. Extent of Discrepancy Between Dynamic and 
Myopic Policies. The key takeaway from the previous 
section is that there is great heterogeneity in gains 
from sequencing across past historical features. These 
gains naturally stem from the differences between the 
fully dynamic and adaptive myopic policies. In this sec
tion, we want to see where the discrepancy between 
the two policies is more pronounced. As such, we first 
need to quantify the discrepancy between the two poli
cies at the session level. For any given session i and pol
icy π, we can determine the distribution of ad shares 
both analytically and through simulations. Let a(d)i and 
a(m)i denote vectors representing ad shares in session i 
under fully dynamic and adaptive myopic policies, respec
tively. We quantify the discrepancy between these two 
distributions using five measures based on ℓ-norm and 
Kullback-Leibler (KL) divergence as follows: 
• Outcome 1: ℓ1-norm of the difference between 

shares ‖a(d)i �a(m)i ‖1
• Outcome 2: ℓ2-norm of the difference between 

shares ‖a(d)i �a(m)i ‖2

Figure 9. (Color online) Average Gains from Dynamic Policy 
over Myopic Policy Across Quintiles for the Number of Past 
Sessions 
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• Outcome 3: KL divergence of a(d)i from a(m)i , that is, 
DKL(a

(d)
i ‖a

(m)
i )

• Outcome 4: KL divergence of a(m)i from a(d)i , that is, 
DKL(a

(m)
i ‖a

(d)
i )

• Outcome 5: Disagreement ratio, which is the frac
tion of ads that have nonzero share under only one of 
the two policies in the set of all feasible ads.

The first four measures capture the extent of differ
ence between ad shares, whereas the fifth measure 
uses a more binary approach and compares distribu
tions in the set of ads that could be shown. We use 
these measures of discrepancy between the two poli
cies and regress them on the set of historical features 
used in the previous section. Like before, we account 
for user and hour fixed effects. We present our results 

in Table 6, where each column shows how historical 
features are associated with each of the discrepancy 
measures. First, we find a consistently positive coeffi
cient for the number of past impressions, which indicates 
that a richer history is associated greater differentia
tion between policies. Second, when we focus on the 
variety of ads seen, we find some weak negative links 
for the first four measures, and a strong negative link 
for the fifth measure. This is likely because higher 
variety of prior ads reduces the effective size of the 
action space by identifying poor-performing ads.

Third, we find that the number of past clicks is associ
ated with more similar shares between the two poli
cies (negative and significant coefficients in columns 
(1)–(4)), but not associated with any difference in the 

Table 5. Heterogeneity in Gains from Dynamic Policy over Myopic Policy Across the Historical Features

Historical features
Dependent variable: Gaini

(1) (2) (3) (4)

No. of past impressions 0.00001*** 0.00001** 0.00001*** 0.00001*
(4.60) (3.00) (3.40) (2.07)

Variety of ads seen �0.00024* �0.00028** �0.00021* �0.00033**
(�2.43) (�2.79) (�2.10) (�3.28)

No. of past clicks 0.00076*** 0.00080*** 0.00080***
(3.70) (3.89) (3.91)

Time since last session 0.00008*** 0.00007**
(4.84) (4.17)

Last session length 0.00036***
(22.23)

User fixed effects ✓ ✓ ✓ ✓

Hour fixed effects ✓ ✓ ✓ ✓

No. of observations 190,206 190,206 190,206 190,206
R2 0.271 0.271 0.271 0.273
Adjusted R2 0.220 0.220 0.220 0.222

Note. Numbers in parentheses are t statistics that are estimated using OLS.
*p < 0.05; **p < 0.01; ***p < 0.001.

Table 6. Discrepancy in the Distribution of Ad Allocation Between Dynamic Across the Historical Features

Dependent variable: Discrepancy between Ad Distributions under Dynamic and Myopic

(1) (2) (3) (4) (5)

Number of past impressions 0.00043*** 0.00019*** 0.00111*** 0.00053*** 0.00005***
(45.43) (48.44) (46.27) (59.47) (23.16)

Variety of ads seen �0.00099* 0.00022 0.00109 �0.00096** �0.00180***
(�2.57) (1.41) (1.10) (�2.62) (�19.56)

Number of past clicks �0.01496*** �0.00734*** �0.02471*** �0.01568*** 0.00028
(�19.22) (�22.85) (�12.39) (�21.38) (1.52)

Time since last session �0.00008 �0.00005* 0.00006 �0.00009 �0.00002
(�1.32) (�2.10) (0.38) (�1.57) (�1.03)

Last session length �0.00095*** �0.00041*** �0.00068*** �0.00050*** 0.00020***
(�15.61) (�16.14) (�4.33) (�8.65) (13.56)

User fixed effects ✓ ✓ ✓ ✓ ✓

Hour fixed effects ✓ ✓ ✓ ✓ ✓

No. of observations 190,206 190,206 190,206 190,206 190,206
R2 0.195 0.196 0.162 0.203 0.192
Adjusted R2 0.138 0.139 0.103 0.147 0.135

Note. Numbers in parentheses are t statistics that are estimated using OLS.
*p < 0.05; **p < 0.01; ***p < 0.001.
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effective set of ads with a nonzero probability (insignif
icant coefficient in column (5)). This is likely because 
the existence of past clicks does not necessarily change 
the effective action space, but substantially increases 
the probability of a particular set of ads across both pol
icies (e.g., ads similar to the ad that is already clicked 
on). Fourth, coefficients for our measure of recency (time 
since the last session) are all insignificant, indicating no 
association between usage recency and discrepancy be
tween policies.

Fifth, we examine the link between the last session 
length and the discrepancy measures. In general, we ex
pect a longer session to increase the discrepancy be
tween the two policies because the fully dynamic policy 
has richer dynamics and more opportunities to differen
tiate. Surprisingly, we find that a higher session length 
is associated with more similar shares (columns (1)–(4)) 
but more disagreement in the set of ads that could be 
shown (column (5)). One potential explanation is that 
the discrepancy captured by our first four measures is 
more pronounced if the session is short. That is, al
though a longer session makes the set of ads more dif
ferent, the probabilities become closer as they capture 
the specifics of leave probabilities.

In Online Appendix J, we examine what constitutes 
the discrepancy between the two policies in terms of 
their use of two session-level features that are widely 
used in the advertising literature: frequency and spacing.

5.4. Robustness Checks
We run a series of tests to check the robustness of the 
results presented in previous sections. We first establish 
the robustness of our results to different initializations of 
our framework, such as the number of ads in the action 
space (Online Appendix K.1), length of horizon (Online 
Appendix K.2), and the specific modeling and evaluation 
data sets used (Online Appendix K.3). We replicate our 
main qualitative results with these different initializa
tions. We further demonstrate the robustness of our 
results by comparing the performance of our framework 
to other benchmarks, such as the one presented in Sun 
et al. (2017) and a predefined sequencing policy that 
does not use real-time information in Online Appendix 
K.4. Finally, we present the robustness of the U-shaped 
pattern in Figure 5 and our results in Table 5 to alterna
tive specifications in Online Appendix K.5.

6. Implications
Our findings have several implications for managers 
and marketing practitioners, as we focus on the prob
lem of value creation in advertising marketplaces. In 
particular, we demonstrate that incorporating within- 
session dynamics through our adaptive ad sequencing 
framework creates value in the marketplace by enhanc
ing user engagement with ads compared with a series 
of benchmark policies such as the single ad policy that 

mimics the case for a nonrefreshable ad slot and adaptive 
myopic policy, which is the dominant allocation strategy 
used by firms (Theocharous et al. 2015). To that end, our 
findings have important applications for the publishers 
on what ad format to use (refreshable or nonrefreshable), 
and more importantly, what kind of allocation policy to 
adopt (myopic versus forward-looking). Specifically, our 
results suggest that the industry standard (adaptive 
myopic policy) leaves considerable value on the table, 
thereby calling for a change in the current practice in the 
industry, particularly because the computational cost of 
our framework is only slightly higher than an adaptive 
myopic framework.20

It is worth emphasizing that the framework is general 
and all ad platforms can use our framework to measure 
the gains in user engagement from adopting a fully 
dynamic framework, as long as there is unconfounded 
randomization in ad allocation. Although ad platforms 
often use deterministic auctions such as first- or second- 
price auctions for ad allocation, they can still incorpo
rate some level of randomization through ɛ-greedy 
approaches (Theocharous et al. 2015) or small-scale 
experimentation (Ling et al. 2017). Similarly, plat
forms can use other measures of user engagement as 
the reward function and different optimization hori
zon, depending on the context. Thus, the applicability 
of our framework does not depend on the specific 
empirical setting in this paper.

Our sequencing framework can also be readily imple
mented in cases where a platform wants to sequence con
tent to achieve optimal user-level outcomes. In particular, 
the improvement in ad response as a result of sequencing 
motivates a wide range of marketing applications that are 
closely related to advertising, such as sequencing promo
tional emails and notifications in an online retail context, 
sequencing articles in news websites to increase audience 
engagement, sequencing social media posts to enhance 
user experience, and sequencing push notifications for 
churn management. More broadly, our framework can be 
extended to other contexts where we want to use persua
sive messaging through adaptive interventions. For exam
ple, in the context of mobile health, a growing body of 
work focuses on just-in-time adaptive interventions (JITAI) 
in mobile apps and studies their impact in shaping con
sumers’ health behavior, including physical fitness and 
activity, smoking, alcohol use, and mental illness (Nahum- 
Shani et al. 2017). Similarly, in the context of education, 
these adaptive interventions can be used to improve stu
dents’ motivation and outcomes (Mandel et al. 2014). These 
showcases can also inspire the public sector to use these 
tools in cases where collective action is required, such as 
environmental protection and political participation.

7. Conclusion
Mobile in-app advertising has grown exponentially 
over the last few years. The ability to exploit the 
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time-varying information about a user to personalize 
ad interventions over time is a key factor in the growth 
of in-app advertising. Despite the dynamic nature of 
the information, publishers often use myopic decision- 
making frameworks to select ads. In this paper, we 
examine whether a dynamic decision-making frame
work benefits the publisher in terms of the user engage
ment with ads, as measured by the number of clicks 
generated per session. Our dynamic framework has 
three main components: (1) a theoretical framework 
that models the domain structure such that it captures 
intertemporal tradeoffs in the ad allocation decision, (2) 
an empirical framework that breaks the policy identifi
cation problem into a combination of machine learning 
tasks that achieve sequence personalization, counterfac
tual validity, and scalability, and (3) a policy evaluation 
method that is separate from policy identification, 
thereby allowing a robust counterfactual policy eval
uation. We apply our framework to large-scale data 
from the leading in-app ad network of an Asian coun
try. Our results indicate that our adaptive ad sequenc
ing policy results in significant gains in the expected 
number of clicks per session compared with a set of 
benchmark policies. In particular, we show that our pol
icy results in 5.76% more clicks, on average, compared 
with the adaptive myopic policy that is the current state 
of practice. Almost all these gains stem from an increase 
in average response to each impression instead of 
increased usage by each user. Next, we document exten
sive heterogeneity in gains from adaptive ad sequencing 
and find a U-shaped pattern for gains over the length of 
users’ past history, indicating that gains are highest for 
either new users or those whose past data are rich. As 
for the policy difference between adaptive ad sequenc
ing and adaptive myopic, we find that our policy results 
in a greater ad diversity, which can be because our pol
icy better manages user attention by showing a more 
diverse set of ads.

Our paper makes several contributions to the litera
ture. First, from a methodological point-of-view, we 
develop a unified dynamic framework that starts with 
a theoretical framework that specifies the domain 
structure in mobile in-app advertising and an empiri
cal framework that breaks the problem into tasks that 
can be solved using a combination of machine learn
ing methods and causal inference tools. Notably, the 
BIQFA algorithm in our framework achieves scalabil
ity without imposing simplifying assumptions on the 
dynamics of the problem. Second, from a substantive 
standpoint, we document the gains from adopting an 
adaptive forward-looking sequencing policy. In par
ticular, we show a 5.76% gain in clicks from adopting 
our fully dynamic policy over the adaptive myopic 
policy, and establish its robustness across a series of 
robustness checks. This comparison is of particular 
importance as the adaptive myopic policy is currently 

the standard approach in the industry. We further 
present a comprehensive study of heterogeneity and 
document key differences between our policy and 
adaptive myopic policy, which is of great value to 
managers who need to interpret the gains and under
stand when and why the framework is most valuable.

Nevertheless, our study has some limitations that 
serve as excellent avenues for future research. First, our 
counterfactual policy evaluation is predicated on the 
assumption that users do not change their behavior in 
response to sequencing policies. Although we exploit 
randomization to obtain our counterfactual estimate, it 
would be important to validate these findings in a field 
experiment. Furthermore, we use the training data off
line to learn counterfactual estimates for click and leave 
outcomes. Extending our framework to an online setting 
that captures exploration/exploitation tradeoffs is impor
tant because online approaches are more cost-efficient 
and robust to cold-start problems. Finally, we use the 
entire within-session history to update state variables. 
Future research can look into more parsimonious frame
works that can be scalable to longer time horizons.
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Endnotes
1 A session is an uninterrupted time that a user spends inside an 
app. This is in contrast with the common practice in desktop adver
tising, where ads remain fixed throughout a session.
2 In this paper, we use the publisher, ad network, and platform 
interchangeably when we refer to the agent who makes the ad 
placement decision.
3 For an excellent summary of the current practice in ad allocation at 
major platforms, please see Despotakis et al. (2021). The auctions in 
place generally alternate between second-price, first-price, and VCG. 
None of these auctions uses a forward-looking allocation rule.
4 Please see Rafieian and Yoganarasimhan (2022a) for an extensive 
summary of the literature on personalization.
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5 Please see chapter 7 in Tellis (2003) for a summary of the earlier 
work on advertising dynamics.
6 There are obviously various ways to define a session based on the 
time gap between two consecutive exposures. We show that our 
results are robust to different definitions.
7 We do not have the data on the banner creatives and its format, 
that is, whether it is a jpeg file or an animated gif.
8 Our sampling procedure is almost identical to that of Rafieian and 
Yoganarasimhan (2022b). However, the number of impressions and 
sessions is slightly different because we need to drop users with 
missing information on latitude and longitude. Rafieian and Yoga
narasimhan (2022b) use those impressions because latitude and lon
gitude do not play a role in their analysis.
9 In many contexts, the publisher can choose a no-ad option, where 
the impression is not filled with an ad. Because all ad opportunities 
are filled in our setting, we exclude the no-ad option from our action 
set. However, future research could easily extend our framework to 
include the no-ad option, depending on the empirical context.
10 For a deterministic policy, π(a | s) will take value one only for one 
ad for any given state.
11 Naturally, we cannot use any information from the future to generate 
a feature: at any point, we only use the prior history up to that point.
12 It is worth noting that the subscript t in Q̃t is only for notational 
simplicity.
13 Formally, we can incorporate that by setting Q̃s(·) � 0 for any s > T.
14 Because this is a supervised learning task, a huge discrepancy 
between the sample of states used for function approximation and 
the sample under the optimal policy can affect the performance of 
the q-function learned.
15 We need to stress that although initialization helps the algorithm 
achieve higher efficiency, the algorithm works under alternative ini
tialization approaches. For example, we yield the same result with 
an initialization of states under a fully random policy, but we need 
to use roughly double the size of sampled states for each t.
16 Each one of these top 15 ads has been shown at least in 1% of all 
impressions.
17 The closest approach to ours is Wilbur et al. (2013), who use 
more contextual and behavioral information to estimate continua
tion probabilities. We extend that approach by using a richer set of 
features and a more flexible learner.
18 We further formalize these benchmark policies in Online Appen
dix I.1 and discuss the time complexity of identifying each policy 
and the Fully Dynamic policy in Online Appendix I.2.
19 Each quintile contains 20% of all sessions, with quintile 1 being 
the bottom 20% of values.
20 It is worth noting that our framework is readily applicable to 
non-strategic environments where the publisher wants to maximize 
user engagement, such as allocating impressions in contexts where 
ads are sold in bulk in prenegotiated reservation contracts. In real- 
time bidding auction environments where advertisers can strategi
cally respond to the change in allocation, we need to design 
strategy-proof auctions that achieve the publisher’s objective. 
Rafieian (2020) studies these strategic environments and proposes a 
revenue-optimal auction for adaptive ad sequencing.
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