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Abstract

In this paper, we propose a unified dynamic framework for adaptive ad sequencing
that optimizes user engagement with ads. Our framework comprises three components
– (1) a Markov Decision Process that incorporates inter-temporal trade-offs in ad
interventions, (2) an empirical framework that combines machine learning methods
with insights from causal inference to achieve personalization, counterfactual validity,
and scalability, and (3) a robust policy evaluation method. We apply our framework
to large-scale data from the leading in-app ad network of an Asian country. We find
that the dynamic policy generated by our framework improves the current practice in
the industry by 5.76%. This improvement almost entirely comes from the increased
average ad response to each impression instead of the increased usage by each user. We
further document a U-shaped pattern in improvements across the length of the user’s
past history, with high values when the user is new or when enough data are available
for the user. Next, we show that ad diversity is higher under our policy and explore the
reason behind it. We conclude by discussing the implications and broad applicability of
our framework to settings where a platform wants to sequence content to optimize user
engagement.

Keywords: advertising, personalization, adaptive interventions, policy evaluation, dynamic
programming, machine learning, offline reinforcement learning
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1 Introduction

1.1 Motivation for Adaptive Ad Sequencing

Consumers now spend a significant portion of their time on mobile apps. The average time spent
on mobile apps by US adults has grown steadily over the past few years, surpassing 4 hours
per day for the first time in the first quarter of 2021 (Kristianto, 2021). This demand expansion,
in turn, has amplified marketing activities targeted towards mobile app users. In 2020, mobile
advertising generated nearly $100 billion in the US, accounting for over double the share of its
digital counterpart, desktop advertising (IAB, 2021). Most of this growth in mobile advertising
is attributed to in-app ads (i.e., ads shown inside mobile apps), with over 80% of ad spend in the
mobile advertising category (eMarketer, 2018).

Two key features of mobile in-app ads have contributed to this dramatic growth. First, the
mobile app ecosystem has excellent user tracking ability, thereby allowing “personalization” of
ad interventions and targeting of users based on their prior behavioral history (Han et al., 2012).
Second, in-app ads are usually refreshable and dynamic in nature: each ad intervention is shown
for a fixed amount of time (e.g., 30 seconds or one minute) inside the app and followed by another
ad intervention. As such, a user can see multiple ad exposures within a session.1 Refreshable ads,
together with the potential for personalization, make in-app advertising amenable to “adaptive ad
sequencing”, that is, optimizing the sequence of ads based on real-time behavioral information.

Adaptive ad sequencing brings a forward-looking perspective to the publisher’s ad allocation
problem.2 That is, sequencing not only captures the immediate user engagement when making a
decision to show an ad based on the information available, but it also takes user engagement in
future events and exposures into account. Figure 1 illustrates this point by differentiating between
the information available from the past and the information that would be available in the future.
However, most platforms do not use a forward-looking model for ad allocation because it adds
to the complexity of the model substantially.3 This is one of the reasons why the current state of
advertising practice is to use supervised learning and contextual bandit algorithms that only focus on
the data available at the moment and ignore the future exposures (Theocharous et al., 2015). Further,
the returns from adopting a forward-looking model are not clear. Thus, the publisher’s decision on

1A session is an uninterrupted time that a user spends inside an app. This is in contrast with the common practice in
desktop advertising, where ads remain fixed throughout a session.

2In this paper, we use the publisher, ad network, and platform interchangeably when we refer to the agent who makes
the ad placement decision.

3For an excellent summary of the current practice in ad allocation at major platforms, please see Despotakis et al.
(2021). The auctions in place generally alternate between second-price, first-price, and VCG. None of these auctions
uses a forward-looking allocation rule.
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Figure 1: A visual schema for the publisher’s ad sequencing decision. The user is at the fifth
exposure in the session, and the publisher needs to decide which ad to show to this user. Unlike the
myopic publisher that only uses the information from the past, a forward-looking publisher also
accounts for the futures exposures when making the decision.

whether to use a dynamic framework boils down to whether incorporating future information helps
them achieve a better outcome.

In principle, using a forward-looking framework is only valuable when there is inter-dependence
between ad exposures, i.e., the ad shown in the current exposure affects the performance of future
exposures and the overall value created by the system. The impact of the publisher’s current decision
on the future exposures can fundamentally be of two types – (1) extensive margin, which means
that the user will stay longer in the session and generate more exposures, and (2) intensive margin,
which means that the engagement with each exposure in the future will be higher, on average. Prior
literature on advertising offers multiple accounts that suggest a great possibility for value creation
through both channels. On the one hand, sequencing can result in greater usage in light of studies
on the link between advertising and subsequent usage (Wilbur, 2008; Goli et al., 2021). On the
other hand, sequencing can increase the response rate to each exposure by better managing effects
of carryover, spillover, temporal spacing, and variety (Rutz and Bucklin, 2011; Jeziorski and Segal,
2015; Sahni, 2015; Lu and Yang, 2017; Rafieian and Yoganarasimhan, 2022a).

1.2 Research Agenda and Challenges

The dynamic effects of advertising give rise to the inter-temporal trade-offs in ad allocation. For
example, Rafieian and Yoganarasimhan (2022a) find that an increase in the variety of ads in a
session results in a higher engagement with the next ad. However, it is not clear that increasing
variety is the optimal decision at any point because it can come at the expense of showing an
irrelevant ad. While the dynamic effects of advertising and the resulting inter-temporal trade-offs
are well-established in the literature, neither research nor practice has looked into how we can
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collectively incorporate these findings to optimize publisher’s outcomes by dynamically sequencing
ads. Our goal in this paper is to fill this gap by developing a unified framework for adaptive ad
sequencing and documenting the gains from this framework.

To build such a framework, we first need to specify our objective. We view the problem through
the lens of a publisher who aims to maximize the expected number of clicks per session. While our
framework is general and can accommodate any measure of user engagement over any optimization
horizon, we focus on clicks as our measure of user engagement because clicks are instrumental to a
publisher’s business model in mobile in-app advertising. With our objective in place, we seek to
answer the following three questions:

1. How can we develop a unified dynamic framework that incorporates the inter-temporal
trade-offs in ad allocation and designs a policy that maximizes user engagement?

2. How can we empirically evaluate the performance of the counterfactual policy identified by
our adaptive ad sequencing framework?

3. What are the gains from using our adaptive ad sequencing framework over existing bench-
marks? Are these gains due to increased usage (extensive margin) or increased average ad
response (intensive margin)? Which session characteristics are linked to greater gains? How
different is the policy identified by our framework from the benchmark policies?

1.3 Our Approach

In this paper, we present a unified three-pronged framework that addresses these challenges and
develops an adaptive ad sequencing policy to maximize user engagement with ads. We present an
overview of our approach in Figure 2, where the top row illustrates that we start with a theoretical
framework that models the domain structure of our problem and informs us of the key empirical
tasks required for policy identification and evaluation, and the bottom row describes the specifics of
our approach.

For our theoretical framework, we specify a domain-specific Markov Decision Process (MDP
henceforth) that characterizes the structure of adaptive ad interventions. In particular, we use a rich
set of state variables that collectively incorporate the dynamic effects of advertising identified in the
literature. Our MDP characterizes the reward at any exposure as well as how the state evolves in
future periods, given any action taken by the publisher. Since our goal is to optimize the number
of clicks per session, we define the reward as the expected probability of click, given the state
variable and ad. This probability is also part of the state transition, as it helps us update the user’s
preference in real-time for the next period. Another probabilistic factor that affects the future state is
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Figure 2: An overview of our approach.

the expected probability of the user leaving the session after an intervention, which determines with
what probability the user will be available to see the next ad exposure. The combination of reward
and transition functions allows us to characterize the publisher’s optimization problem theoretically.

Next, to empirically identify the optimal sequencing policy, we develop an empirical framework
that allows us to evaluate all possible sequencing policies for each session. As broken down by
our theoretical framework, we first need to obtain personalized estimates of the primitives of our
MDP – expected click and leave probabilities. We do so by using machine learning methods that
can capture more complex relationships between the covariates and the outcome. In particular, we
use an Extreme Gradient Boosting (XGBoost henceforth) algorithm with a rich set of features to
predict click and leave outcomes. To ensure the counterfactual validity of our estimates, we use key
insights from the causal inference literature and narrow down our focus on counterfactual sequences
that could have been shown in our data. This is because machine learning algorithms can only
generate accurate predictions for instances within the joint distribution of the training set used for
model fitting. Further, we control for propensity scores to account for potential selection in our
predictions. Lastly, for the scalability of our empirical framework, we develop an algorithm called
backward induction for q-function approximation (BIQFA) that takes the primitive estimates and
learns a function that approximates the expected sum of current and future rewards for each pair of
state variables and ad. This function approximation approach avoids the exhaustive search over any
pair of state and ad, thereby reducing the computational burden substantially.

While our empirical framework for policy identification separately evaluates each policy to find
the optimal one, we cannot use the same evaluation approach to assess the performance of our policy,
since the policy identified by our framework will always outperform other policies by construction.
To address this challenge, we develop an approach called Honest Direct Method (HDM) that
completely separates the evaluation criteria for policy identification and policy evaluation: the data
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and models used for identification have no overlap with the data and model used for evaluation. To
increase the robustness of this approach, we use a fully held-out third data set for final evaluation
that is not used for model building in either policy identification or policy evaluation stages.

1.4 Findings and Contributions

We apply our framework to the data from a leading mobile in-app ad network of a large Asian
country. Our setting has notable features that make it amenable to our research goals. First, the ad
network uses a refreshable ad format where ad interventions last for one minute and change within
the session. Second, the ad network runs a quasi-proportional auction that employs a probabilistic
allocation rule, which induces a high degree of randomization in ad allocation Together, these
two features create exogenous variation in the sequences shown in the data, thereby satisfying an
essential requirement for our framework.

To establish the performance of our adaptive ad sequencing framework, we evaluate the gains
from adaptive ad sequencing policy relative to three benchmark policies: (1) random policy, which
selects ads randomly and is often used as a benchmark in the reinforcement learning literature,
(2) single-ad policy, which only shows a single ad with the highest reward in the session, thereby
mimicking the practice of using a non-refreshable ad slot as is common in desktop advertising, and
(3) adaptive myopic policy, which uses all the information available and selects the ad with the
highest reward at any exposure but ignores the expected future rewards. The adaptive myopic policy
reflects the standard practice in the advertising industry, where publishers use supervised learning or
contextual bandit algorithms to estimate click-through rate (CTR) for an ad in a given impression.

We evaluate all these policies on a completely held-out test set using different metrics. First,
we document a 79.59% increase in the expected number of clicks from our fully dynamic policy
over the random policy. Next, we show that our fully dynamic policy results in 27.46% greater
expected number of clicks per session than the single-ad policy. This finding demonstrates the
opportunity cost of using a non-refreshable ad slot throughout the session, supporting the current
industry trend of using refreshable ad slots. Finally, we focus on our key comparison in this paper
and demonstrate a 5.76% gain in the expected number of clicks per session from our fully dynamic
policy over the adaptive myopic policy. This suggests that choosing the best match at any point will
not necessarily create the best match outcome at the end of the session. Instead, the right action
sometimes is to show the ad that is not necessarily the best match at the moment but transitions the
session to a better state in the future. This finding provides a strong proof-of-concept for the use of
our framework. It has important implications for publishers and ad networks, especially since the
current practice in the industry overlooks the dynamics of ad sequencing.

We further compare our policy with the benchmark policies using two other metrics – session
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length and ad concentration. Focusing on the session length shows how much of the gains from
our policy come from an increase in usage and the number of impressions generated (extensive
margin). While our policy achieves a slightly higher session length, it is only 0.2% greater than the
session length under the adaptive myopic policy, which suggests that the source for our gains is
not the increase in usage, but the increase in the average ad response rate (intensive margin). We
then focus on ad concentration as our next metric and use the Herfindahl–Hirschman Index (HHI)
for ads shown under each policy. Our results reveal an interesting pattern: adaptive ad sequencing
policy results in a lower HHI than both adaptive myopic and single-ad policies, suggesting a
greater ad diversity under our policy. A greater ad diversity can have long-term implications for the
competition between advertisers as well as welfare impacts for consumers.

Next, to better interpret the mechanism underlying our gains, we explore the heterogeneity in
gains from our policy over the adaptive myopic policy. We document a U-shaped pattern in gains
over the number of prior sessions a user has been part of. This pattern suggests a mix of accounts as
the user becomes more experienced that affect the gains in opposite directions. We explore these
potential accounts in a series of regression models that illustrate the heterogeneity in gains across
pre-session covariates (e.g., number of prior impressions or clicks by the user). To understand where
the difference between our policy and adaptive myopic policy comes from, we first measure the
discrepancy between the distribution of ad allocation under the two policies using different measures
such as `-norm and Kullback-Leibler divergence, and then regress this discrepancy measure on
pre-session characteristics. We find that a higher number of past impressions is associated with a
greater discrepancy in distributions. In contrast, a higher variety of prior ads and number of past
clicks are associated with a lower discrepancy in distributions. We further compare the two policies
at the session level in how they utilize frequency and spacing strategies. We find that our policy
uses lower frequency and higher spacing in interventions towards the end of the session than the
adaptive myopic policy, which can explain the lower ad concentration in our policy.

In sum, our paper makes several contributions to the literature. First, from a methodological
standpoint, we develop a unified dynamic framework that takes the past advertising data and
scalably produces an optimal dynamic policy to personalize the sequence of ads in a session. A
key contribution of our adaptive ad sequencing framework that comes from the use of BIQFA
algorithm is that it does not impose restrictive assumptions on the dynamic structure of the problem
and remains agnostic about how dynamics arise in our setting. To our knowledge, this is the first
paper that takes a prescriptive approach to generate an optimal dynamic policy by collectively
incorporating the dynamic effects of advertising documented in the literature. Substantively, we
establish the gains from our dynamic framework over a set of benchmarks that are often used in
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research and practice. In particular, we demonstrate that the gains from adopting the dynamic policy
generated by our framework are 5.76%, compared to the adaptive myopic policy. This proof-of-
concept is particularly important as the current practice in this industry uses the adaptive myopic
policy and ignores the dynamics of the ad allocation problem. We further present a comprehensive
analysis of the gains from our framework to provide interpretation for the mechanism underlying
the gains. Our findings shed light on when and why our framework is more valuable than alternative
policies. Lastly, from a managerial perspective, our framework is fairly general and can be a applied
to a wide variety of domains where a platform or publisher aims to optimally sequence content to
achieve better user-level outcomes, such as sequencing of articles to increase audience engagement
with the content in news websites, sequencing of social media posts to increase user interaction and
engagement, and sequencing of push notifications to reduce customer churn.

2 Related Literature
First, our paper relates to the marketing literature on personalization and targeting. Early papers in
this stream build Bayesian frameworks that exploit behavioral data and personalize marketing mix
variables (Rossi et al., 1996; Ansari and Mela, 2003; Manchanda et al., 2006). Recent papers in
this domain use machine learning algorithms often combined with insights from causal inference
to achieve greater personalization in different domains such as search (Yoganarasimhan, 2020),
advertising (Rafieian and Yoganarasimhan, 2021), free trial length (Yoganarasimhan et al., 2020),
and product versioning through offering different ad loads to users (Goli et al., 2021).4 While all
these papers focus on prescriptive or substantive frameworks to study personalization, they all study
this phenomenon from a static point of view. Our paper extends this literature by bringing a dynamic
objective to this problem and offering a scalable framework to develop forward-looking personalized
targeting policies. From a substantive viewpoint, we show that the gains from adopting such forward-
looking personalized policies is 5.76% compared to the baseline of myopic personalized policies.

Second, our work relates to both the substantive and prescriptive literature on the dynamics
of advertising. Early work in this domain focuses on aggregate advertising models to understand
ad responses over time and strategies such as pulsing (Little, 1979; Horsky, 1977; Simon, 1982;
Naik et al., 1998; Dubé et al., 2005; Aravindakshan and Naik, 2011).5 More recent papers in this
domain use larger scale individual-level data of digital advertising and document different dynamic
effects of advertising, such as effects of ad carryover or spillover, temporal spacing, and variety in
search advertising (Rutz and Bucklin, 2011; Jeziorski and Segal, 2015; Lu and Yang, 2017; Sahni,
2015; Zantedeschi et al., 2017; Rafieian and Yoganarasimhan, 2022a). Inspired by the dynamics of

4Please see Rafieian and Yoganarasimhan (2022b) for an extensive summary of the literature on personalization.
5Please see Chapter 7 in Tellis (2003) for a summary of the earlier work on advertising dynamics.
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Paper Individual-level Forward-looking High-dimensional Dynamics-agnostic
data allocation state space (no assumption)

Dubé et al. (2005) 7 3 7 3

Urban et al. (2013) 3 7 7 7

Wilbur et al. (2013) 3 3 7 7

Kar et al. (2015) 3 3 7 7

Schwartz et al. (2017) 3 7 7 7

Sun et al. (2017) 3 3 7 7

Theocharous et al. (2015) 3 3 7 3

Table 1: Positioning of our paper with respect to the prior literature on ad allocation.

advertising, a different stream of work brings a more prescriptive view to the problem and focuses
on the optimal policy design for advertisers and platforms. Given the complexity of the problem,
these papers often simplify the problem by mapping the entire space into a few segments (Urban
et al., 2013), ignoring inter-temporal trade-offs through a bandit specification (Schwartz et al., 2017),
or imposing some structure on the dynamics to find a closed-form solution (Wilbur et al., 2013;
Kar et al., 2015; Sun et al., 2017). Table 1 summarizes the prior work on ad allocation in terms
of using (1) individual-level data to allow for ad personalization, (2) forward-looking (as opposed
to myopic) framework, (3) high-dimensional state space that captures all the dynamic effects of
advertising, and (4) no parametric assumption on state transitions (dynamics-agnostic). As shown in
Table 1, none of the existing work of ad allocation satisfies all the four criteria, which highlights the
contribution of our paper: using backward induction q-function approximation (BIQFA) algorithm
allows us to collectively incorporate all the documented dynamic effects of advertising and find
the optimal dynamic policy without reducing the richness and dimensionality of the state space or
imposing any structure on the dynamics of the problem.

Finally, our paper relates to the literature on offline or batch reinforcement learning (RL), where
the learner does not actively interact with the environment and must rely on observational data
from the past to design an optimal dynamic policy. This class of problems is particularly relevant
when safety guarantees are of utmost priority, and the system is not allowed to actively explore
(Thomas et al., 2019). An important task in all these problems is to find a robust approach to
evaluate counterfactual policies, i.e., policies that have not necessarily been implemented in the data
available. This problem is often referred to as off-policy policy evaluation in the offline RL literature,
and a variety of approaches are proposed that use both model-based and model-free approaches
for off-policy policy evaluation (Thomas et al., 2015; Thomas and Brunskill, 2016; Le et al., 2019;
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Kallus and Uehara, 2020). Closely related to our empirical context, Theocharous et al. (2015) use
real advertising data and extend the problem of personalized ad recommendation to a dynamic
setting. However, their paper only captures usage-related dynamics and ignores other dynamic ad
effects such as temporal spacing, spillover, and variety. As such, the empirical results are a bit mixed
with a low level of confidence in establishing gains from dynamic over myopic policies, despite
their use of a high-confidence off-policy evaluation framework. Our work uses platform data with a
richer state space and develops a dynamic framework that collectively incorporates dynamic effects
of advertising and establishes the gains from our framework over myopic policies. More broadly,
we add to the offline RL literature by presenting a model-based backward induction q-function
approximation (BIQFA) algorithm and using an honest direct method that allows us to further
explore the mechanism behind the gains from a dynamic policy and adds to the interpretability of
our framework.

3 Setting and Data

3.1 Setting

Our data come from a leading mobile in-app advertising network of a large Asian country that had
over 85% of the market share around the time of this study. Figure 3 summarizes most key aspects
of the setting. We number the arrows in Figure 3 and explain each step of the ad allocation process
in details below:

• Step 1: The ad network designs an auction to sell ad slots. In our setting, the ad network runs a
quasi-proportional auction with a cost-per-click payment scheme. As such, for a given ad slot
and a set of participating ads A with a bidding profile (b1, b2, . . . , b|A|), the ad slot is allocated
to ad a with the following probability:

π0(b;m) =
bama∑
j∈A bjmj

, (1)

where ma is ad a’s quality score, which is a measure that reflects the profitability of ad a. The
ad network does not customize quality scores across auctions. The subscript 0 in π0 refers to
the fact that this is the baseline allocation policy through which our data are generated. The
payment scheme is cost-per-click, similar to Google’s sponsored search auctions. That is, ads
are first ranked based on their product of bid and quality score, and the winning ad pays the
minimum amount that guarantees their rank if a click happens on their ad.

• Step 2: Advertisers participating in the auction make the following choices: (a) design of their
banner, (b) which impressions they want to target, and (c) how much to bid. Figure 3 shows an
example of an auction with four different ads.
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Figure 3: A visual schema of our setting

• Step 3: Whenever a user starts a new session in an app (we use a messaging app in Figure 3 as
an example), a new impression is being recognized, and a request is sent to the publisher to run
an auction.

• Step 4: The auction takes all the participating ads into account and selects the ad probabilistically
based on the weights shown in Equation (1). Note that all the participating ads have the chance
to win the ad slot. This is in contrast with more widely used deterministic mechanisms like
second-price auctions, where the ad with the highest product of bid and quality score always
wins the ad slot.

• Step 5: The selected ad is placed at the bottom of the app, as shown in Figure 3.

• Step 6: Each ad exposure lasts one minute. During this time, the user makes two key decisions:
(a) whether to click on the ad, and (b) whether to stay in the app or leave the app and end
the session. If the user clicks on the ad, the corresponding advertiser has to pay the amount
determined by the auction. After one minute, if the user continues using the app, the ad network
treats the continued exposure as a new impression and repeats steps 3 to 6 until the user leaves
the app. We assume that a user has left the app when the time gap until the next exposure
exceeds 5 minutes. Consistent with this definition, we define a session as the time interval
between the time a user comes to an app and the time she leaves the app.6

3.2 Data

We have data on all impressions and clicks for the one month from September 30, 2015, to October
30, 2015. Overall, we observe 1,594,831,699 impressions with the following raw inputs for each
6There are obviously various ways to define a session based on the time gap between two consecutive exposures. We
show that our results are robust to different definitions.
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impression: (1) timestamp, (2) app ID, (3) user ID (Android Advertising ID), (4) GPS coordinates,
(5) targeting variables that include the province, app category, hour of the day, smartphone brand,
connectivity type, and mobile service provider (MSP), (6) ad ID7, (7) bid submitted by the winning
ad, and (8) the click outcome. Importantly, our data come directly from the platform so we have
access to all the information that the platform collects. Further, we observe all the variables
that advertisers can possibly use for targeting. Hence, we can overcome typical issues related to
unobserved confounding due to the unobservability of ad assignments.

For our study, we use a sample of our full data that reflects the main goals of this paper. Since
we want to optimally sequence ads within the session, our optimal intervention depends on users’
history. As such, we only focus on users for whom we can use their entire history. The challenge is
that no variable in our data identifies new users. As illustrated in Figure 4, our approach is to split
our data into two parts based on a date (October 22) and keep users who are active in the second part
of the data (October 22 to October 30), but not in the first part (September 30 to October 22). This
sampling scheme guarantees that the users who are identified as new users have not had any activity
in the platform at least for the three weeks prior to that. We drop all the other users from our data.

Next, we only focus on the most popular mobile app in the platform, a messaging app that has
over a 30% share of total impressions. As such, we drop new users who do not use this app. There
are a few reasons why we focus on this app. First, this is the only app whose identity is known
to us. Second, we expect the sequencing effects to be context-dependent, so focusing on one app
helps us perform a cleaner analysis. Finally, it takes users a relatively long time to learn how to use
certain apps (e.g., games), and learning effects can interfere with sequencing effects. However, this
messaging app is widely popular in the country and easy to use, so we expect users to pay more

7We do not have the data on the banner creatives and its format, i.e., whether it is a jpeg file or an animated gif.
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attention to ads from the beginning.
Overall, our sampling procedure gives us a total of 8,031,374 impressions shown to a set of

84,306 unique new users. Over 40% of these users use other apps in addition to the messaging
app. In our data, there are 1,177,422 unique sessions entirely inside the focal messaging app that
correspond to 6,357,389 impressions. We only focus on the impressions shown in the messaging
app for our analysis. However, we use impressions shown in other apps for feature generation.
Finally, it is worth noting that our sample is almost identical to that of Rafieian and Yoganarasimhan
(2022a).8 We refer the interested reader to that paper for further description of the data.

3.3 Summary Statistics

3.3.1 User-level Variables

As discussed earlier, we sample users for whom we have the entire past history. As such, we can
calculate different metrics over the entire user history and present a summary of these metrics across
users. We focus on five variables and compute them using the sample of 8,031,374 impressions. We
present these statistics in Table 2. We find that, on average, a user has participated in 16.23 sessions,
seen 95.26 impressions and 13.97 distinct ads, and clicked 1.55 times on these impressions. Further,
the average CTR for a user is roughly 2%, ranging from 0 to a CTR as high as 15%. Overall, we
observe a large standard deviation and a wide range for all these variables. For example, while the
median number of impressions a user has seen is 40 in our data, there is a user who has seen 7,259
impressions. Thus, these statistics suggest substantial heterogeneity in user behavior that we aim to
understand in our framework.

Variable Mean SD Min Median Max
Number of Sessions 16.23 20.80 1 9 260
Number of Impressions Seen 95.26 165.62 1 40 7256
Variety of Ads Seen 13.97 11.82 1 11 114
Number of Clicks Made 1.55 2.23 0 1 20
Click-through Rate (CTR) 0.02 0.03 0 0.01 0.15

Table 2: Summary statistics of the user-level variables.

3.3.2 Distribution of Session-Level Outcomes

Our goal in this paper is to examine how much we can improve session-level user engagement
through optimal sequencing of ads. As such, the key outcomes are defined at the session-level. We
8Our sampling procedure is almost identical to that of Rafieian and Yoganarasimhan (2022a). However, the number of
impressions and sessions is slightly different because we need to drop users with missing information on latitude and
longitude. Rafieian and Yoganarasimhan (2022a) use those impressions because latitude and longitude do not play a
role in their analysis.
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Figure 5: Empirical CDF of the session length and total number of clicks per session.

use the sample for the focal app to compute the empirical CDF of two main outcomes of interest in
this study – the total number of clicks made in a session and session length. Figure 5a shows the
empirical CDF for the total number of clicks per session, which is our primary outcome of interest.
As expected, most sessions end with no clicks on ads shown within the session, and the percentage
of sessions with at least one click amounts to 6.66%. This is a reasonably high percentage in this
industry. Interestingly, there are sessions with more than one click. Further exploration suggests
that these sessions are typically much longer than other sessions, with an average length of over 15
exposures.

In Figure 5b, we show the empirical CDF of session length, as measured by the number of
exposures shown within any session. This figure shows that around 50% of all sessions end in only
two exposures. Further, the empirical CDF in Figure 5b shows that the vast majority of sessions last
for ten or fewer exposures, and only a tiny fraction of them last for 30 or more exposures.

To better understand these two session-level outcomes, we focus on the outcomes at the exposure
level: users’ decision to click on an ad and leave the session. These decisions determine the transition
dynamics of our problem. In Appendix A.1, we visualize the observed proportion of different
transition possibility from one exposure to the next, across exposure numbers. Importantly, we find
that the click decision does not necessarily lead to the leave decision.

3.3.3 Shares of Ads

Overall, we observe a total of 328 ads shown in our sample for the focal app. These ads have
different shares of total impression, with some having a much higher share than others. In Appendix
A.2, we show how each ad in our study constitutes a different fraction of total impression. In
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particular, we sort these ad shares in our data and demonstrate that top 15 ads account for roughly
70% of the impressions in our data. We later use this information when specifying the setting of our
framework.

4 Framework for Adaptive Ad Sequencing
We now present our dynamic framework for the sequencing of ads. We start with the theoretical
setup of our model in §4.1. We then use our theoretical setup to identify and address challenges in
empirically designing the optimal policy in §4.2. Next, we discuss how we evaluate a policy using
the data at hand in §4.3. Finally, in §4.4, we describe the implementation of our framework and the
practical challenges that may arise.

4.1 Theoretical Setup

We begin by describing the theoretical setup of our framework. Let i denote the session, and t
denote each impression in that session, e.g., t = 1 refers to the first impression in a session. We
perform our optimization at the session level, where each decision-making unit is an impression. As
discussed earlier, our goal is to develop a dynamic framework that: (1) captures the inter-temporal
trade-offs in a publisher’s ad placement decision in a session, and (2) uses both pre-session and
adaptive session-level information to personalize the sequence of ads for the user in any given
session. A Markov Decision Process (MDP) gives us a general framework to characterize the
publisher’s problem and incorporate the two main goals. An MDP is a 5-tuple 〈S,A, P, R, β〉,
where S is the state space, A is the action space, P is the transition function, R is the reward
function, and β is the discount factor. We describe each of these five elements in our context as
follows:

• State Space (S): The state space consists of all the information the publisher has about an
exposure, which affects her decision at any time period. The publisher can take two pieces
of information into account: (1) pre-session information, and (2) session-level information.
Pre-session information contains any data on the user up until the current session, including
his demographic variables and behavioral history. For any session i, we denote the pre-session
state variables by Xi. It is important to notice that the pre-session variables are not adaptive,
i.e., it does not change within the session, so we can drop the t subscript. On the other hand,
session-level variables are adaptive and change within the session. Unlike the conventional
approach in MDP that restricts the state to represent only the previous time period, we consider
the entire sequence of ads and users’ decisions within the session. That is, for any exposure t in
session i, we define Gi,t as the set of session-level state variables as follows:

Gi,t = 〈Ai,1, Yi,1, Ai,2, Yi,2, . . . , Ai,t−1, Yi,t−1〉, (2)
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where Ai,s denotes the ad shown in exposure number s and Yi,s denotes whether the user clicked
on this ad (s < t). As a result, Gi,t is the sequence of all ads and actions within the session
up to the current time period. Overall, we define the state variables as Si,t = 〈Xi, Gi,t〉, i.e., a
combination of both pre-session and session-level variables.

• Action Space (A): The action space contains the set of actions the publisher can take. In our
case, this action is to show one ad from the ad inventory every time an impression is recognized.
As such, A is the entire ad inventory in our problem.9

• Transition Function (P ): This function determines how the current state transitions to the future
state, given the action made at that point. As such, we can define P : S ×A× S → [0, 1] as a
stochastic function that calculates the probability P (s′ | s, a) where s, s′ ∈ S and a ∈ A. Note
that this is a crucial component of an MDP since publishers cannot control the dynamics of
the problem if the next state is not affected by the current decision. In §4.1.1, we discuss the
components of the transition function in our problem in detail.

• Reward Function (R): This function determines the reward for any action a at any state s.
As such, we can define this function as R : S × A → R. This function can take different
forms depending on the publisher’s objective. In our case, since the publisher is interested in
optimizing user engagement, they can use different metrics that reflect user engagement, such as
the probability that the user clicks on the ad. In §4.1.2, we discuss our choice of reward function
in greater details.

• Discount Factor (β): The rate at which the publisher discounts the expected future rewards.
Given the short time horizon of the optimization problem, a risk-neutral publisher must value
the current and expected future rewards equally, indicating that β is very close to 1.

With all these primitives defined, we can now write the publisher’s maximization problem as
follows:

argmax
a

[
R(s, a) + βEs′|s,aV (s′)

]
, (3)

where V (s′) is the value function incorporating expected future rewards at state s′ if the publisher
selects ads optimally. Following Bellman (1966), we can write this value function for any state
s ∈ S as follows:

V (s) = max
a
R(s, a) + βEs′|s,aV (s′) (4)

In summary, as shown in Equation (3), the optimization problem consists of two key elements – the
current period reward and the expected future rewards. The publisher chooses the ad that maximizes

9In many contexts, the publisher can choose a no-ad option, where the impression is not filled with an ad. Since all ad
opportunities are filled in our setting, we exclude the no-ad option from our action set. However, future research could
easily extend our framework to include the no-ad option, depending on the empirical context.
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Figure 6: An example illustrating the state transitions.

the sum of these two elements.

4.1.1 Transition Function

We now characterize the law-of-motion, i.e., how state variables transition given the publisher’s
action at any point. As mentioned earlier, we are interested in the probability of the next state
being s′, given that action a is taken in state s, i.e., P (s′ | a, s). Suppose that the user is in state
Si,t = 〈Xi, Gi,t〉 at exposure t in session i. The only time-varying factor in Si,t that can transition
is Gi,t, which is the history of the sequence. Given the definition of Gi,t in Equation (2), we can
determine the next state if we know the user’s decision to click on the current ad and/or continue
staying in the session. There are three mutually exclusive possibilities for state transitions:

• Case 1 (click and stay): If the user clicks on ad Ai,t and stays in the session, we can define the
next state as follows:

Si,t+1 = 〈Xi, Gi,t, Ai,t, Yi,t = 1〉, (5)

where Yi,t = 1 indicates that the user has clicked on the ad shown in exposure number t.

• Case 2 (no click and stay): If the user does not click on ad Ai,t and stays in the session, we can
similarly define the next state as follows:

Si,t+1 = 〈Xi, Gi,t, Ai,t, Yi,t = 0〉, (6)

where Yi,t = 0 indicates that the user has not clicked on the ad shown in exposure number t.

• Case 3 (leave): Regardless of user’s clicking outcome, if the user decides to leave, the entire
session is terminated and there is no more decision to be made. Thus, we can write:

Si,t+1 = ∅ (7)
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Figure 6 visually presents the three possibilities presented above. This figure illustrates an
example where the publisher shows an ad in the fourth exposure in a session. It shows three
possibilities and how each forms the next state. Based on this characterization, we can now define
the transition function for any pair of action and state as follows:

P (Si,t+1 | a, Si,t) =



(
1− P (Li,t = 1 | a, Si,t)

)
P (Yi,t = 1 | a, Si,t) Case 1, Eq. (5)(

1− P (Li,t = 1 | a, Si,t)
)(

1− P (Yi,t = 1 | a, Si,t)
)

Case 2, Eq. (6)

P (Li,t = 1 | a, Si,t) Case 3, Eq. (7)

0 otherwise
(8)

Equation (8) illustrates the two non-deterministic components of state transitions – click and leave
probabilities. As such, estimating these two outcomes would be equivalent to estimating transition
functions. In §4.2, we discuss our approach to obtain these estimates.

4.1.2 Reward Function

Another piece of an MDP that needs to be defined is the reward function. The reward function can
take different forms depending on the publisher’s objective. We primarily focus on maximizing the
total number of clicks per session as our main objective because of a few reasons. First, clicks are
the main source of revenue for the publisher since the advertiser only pays when a click happens.
Second, almost all ads in our study are mobile apps whose objective is to get more clicks and
installs. In the literature, this type of ad is referred to as performance ads, and their match value is
generally assumed to be the probability of click (Arnosti et al., 2016). Hence, clicks are particularly
good measures of user engagement with ads in our setting. Third, clicks are realized immediately in
the data and well-recorded without measurement error.

Given that publishers want to maximize the number of clicks made per session, we can define
the reward function as the probability of click for a pair of state and action. For exposure number t
in session i, we can write:

R(Si,t, a) = P (Yi,t = 1 | a, Si,t) (9)

This is the probability of clicking on ad a if shown in the current state.

4.2 Empirical Strategy for Policy Identification

In this section, we discuss how we can take our theoretical framework to data and identify the policy
that maximizes the expected rewards for each session, as characterized in our MDP. To do so, we
first formally define a policy as follows:
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Definition 1. A policy is a mapping π : S ×A → [0, 1], that assigns a probability π(a | s) to any

action a ∈ A taken in any given state s ∈ S.

This definition of policy allows for both deterministic and non-deterministic policies.10 We now
characterize our main goal in this section: we want to use our data to identify a policy π∗ that
maximizes the expected rewards for a session. That is, from the beginning to the end of a session,
this policy determines which ad to show in each exposure to maximize the expected sum of rewards
in that session. Following our MDP characterization, the optimal action at any given point is
determined as follows:

arg max
a∈Ai,t

[
R(Si,t, a) + βESi,t+1|Si,t,aV (Si,t+1)

]
, (10)

where Ai,t is the ad inventory and Si,t is the state variable at exposure t in session i. Solving the
optimization problem in Equation (10) for each possible state gives us the optimal policy function
π∗.

To solve the dynamic programming problem defined in Equation (10), we face three key
challenges:

• First, we need to obtain personalized estimates of the two unknown primitives in Equation (10) –
click and leave probabilities. That is, for any pair of state variables and ad, we need to accurately
estimate the probability of click and leave. We discuss our solution to this challenge in §4.2.1.

• Second, our optimization is over the set of all ads. As such, even if we develop models that
obtain personalized estimates of click and leave outcomes with high predictive accuracy for ads
that are shown in our data, there is no guarantee that these models provide accurate estimates
for the set of all possible ads (i.e., counterfactual ads). Thus, we need a framework with
counterfactual validity. We describe our solution to this challenge in §4.2.2.

• Third, although it is – in principle – sufficient to have the estimates of reward and transition
probabilities in order to find value functions, such an exact solution is not computationally
feasible in our setting where the state space is high dimensional and grows exponentially in the
number of time periods. Hence, we need an approximate solution that is scalable. We discuss
our solution to this scalability issue in §4.2.3.

4.2.1 Personalized Estimation of Model Primitives

We start with our first challenge and formalize it as follows:

Challenge 1. Let D = {(Si,t, Ai,t, Yi,t, Li,t)}i,t denote the sample of impressions available, where

the click and leave outcomes are recorded for each impression as Yi,t and Li,t respectively. We want

10For a deterministic policy, π(a | s) will take value one only for one ad for any given state.
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to estimate functions l̂ and ŷ that take a pair of state variable (Si,t) and action (Ai,t) as input and

returns personalized estimates of expected click and leave probabilities as follows:

ŷ(Si,t, Ai,t) = E(Yi,t | Si,t, Ai,t) (11)

l̂(Si,t, Ai,t) = E(Li,t | Si,t, Ai,t) (12)

To address this challenge, we need a function that can differentiate between impressions given
the available information. Since this is an outcome prediction task, we need to use machine
learning methods that do not impose restrictive parametric assumptions and capture more complex
relationships between the covariates and outcomes (Mullainathan and Spiess, 2017). Further, to
allow a machine-learning algorithm to differentiate between impressions, it is essential to generate
a rich set of covariates or features to represent impressions. Thus, our task becomes one of feature
engineering where we want to use our domain knowledge to map 〈Si,t, Ai,t〉 to a set of meaningful
features that help us predict both click and leave outcomes.

We first define four feature categories: (1) timestamp and the ad shown in the impression that
constitute the contextual information about the impression, (2) demographic features that are raw
inputs about the user that are recorded by the platform, such as user’s location and smartphone
brand, (3) historical features that contain the information about the user’s behavioral history up until
the current session, such as the number of impressions the user has seen in prior sessions, and (4)
session-level features that only use the information from the current session, such as the variety of
previous ads shown in the session. Figure 7 provides an overview of our feature categorization. In
this example, the user is at her fourth exposure in her third session. The features for this particular
exposure include the observable demographic features, historical features generated from the prior
sessions, and session-level features that are generated from the first three exposures shown in the
current session.11

Our feature generation framework borrows from the literature on the advertising dynamics and
behavioral mechanisms underlying these dynamics. Since the raw inputs for historical and session-
level features are a user’s past interactions with ads, we use features that summarize each user’s
long- and short-term interactions with each ad in terms of frequency akin to goodwill stock models
(Nerlove and Arrow, 1962; Dubé et al., 2005), recency or spacing according to memory-based
models (Sawyer and Ward, 1979; Sahni, 2015), and clicks that have been shown to greatly help with
the task of click prediction (Rafieian and Yoganarasimhan, 2021). While we use the literature to
inform our feature generation, we take an agnostic approach and let our learning algorithm flexibly
capture these relationships. We store these features in large inventory matrices where rows are
11Naturally, we cannot use any information from the future to generate a feature: at any point, we only use the prior

history up to that point.
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Figure 7: A visual schema for our feature categorization.

sessions and columns are ads. This parsimonious yet rich inventory-based summarization allows us
to generate other features such as ad variety and diversity as they are determined by the frequency of
all ads. We further include other usage-based features such as average session length or time interval
between sessions to predict the leave outcome more accurately based on the past data. Overall, our
feature generation framework takes 〈Si,t, Ai,t〉 and gives us a set of features g(Si,t, Ai,t) for each
impression that we can use as inputs of our learning algorithm. We present the details of all these
features in Web Appendix §B.

4.2.2 Counterfactual Validity

Our second challenge comes from the policy aspect of our framework – not only do we need to
obtain personalized estimates of click and leave outcomes for impressions shown in our data, but
we also need to estimate these outcomes for counterfactual ads that are not shown in the data. One
immediate solution is to apply our feature generation framework to counterfactual impressions
and use our learning algorithm to estimate the outcomes. However, this approach can run into
two key problems. First, while machine learning algorithms are known to do well in the task of
interpolation, we need further guarantees on the feasibility of our counterfactual impressions for
the task of extrapolation, i.e., counterfactual estimation. Second, suppose the ad assignment is
confounded by an unobserved factor that is not in our feature set. In that case, the learning algorithm
may incorrectly learn the link between the unobserved variable and outcomes as an ad effect. This
is similar to the issue of endogeneity or selection on unobservables in the causal inference literature.
We formally present these two challenges as follows:

Challenge 2. Suppose the predictive models ŷ and l̂ are trained on dataD = {(Si,t, Ai,t, Yi,t, Li,t)}i,t.
Let Dc = {

⋃
a∈Ai,t

(Si,t, a, Yi,t, Li,t)}i,t denote the counterfactual data set. To ensure the counterfac-

tual validity of our estimates on the couterfactual data, we need to address the following challenges:
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1. For any ad a ∈ Ai,t, the data point with the pair of state variable and action (Si,t, a) and the

corresponding set of features g(Si,t, a) could have been generated in our training data D, so

finding values of ŷ(Si,t, a) and l̂(Si,t, a) is a form of interpolation.

2. For any ad a ∈ Ai,t, the assignment probability only depends on the observed set of features

used in training models ŷ and l̂.

To satisfy the first condition in Challenge 2, we need to identify the feasibility set Ai,t for
each impression such that any ad a ∈ Ai,t could have been shown in that impression. This is
equivalent to the overlap or positivity assumption in the causal inference literature that requires
each treatment condition (ad in our case) to have a non-zero propensity score. That is, if e(Si,t, a)

denotes the propensity of ad a to be shown in exposure t in session i, we must have e(Si,t, a) > 0

for any a ∈ Ai,t. While attainable in principle, this is a condition that is rarely satisfied in most
non-experimental digital advertising settings since ads are selected through a deterministic allocation
rule in commonly used auctions such as second-price. In our setting, however, the platform uses
a quasi-proportional auction that induces randomization in ad allocation: each ad has a non-zero
propensity score if and only if it participates in an auction. As such, the propensity score is zero only
when the ad is not participating in an auction due to their targeting decision or campaign availability.
We employ a filtering strategy similar to that in Rafieian and Yoganarasimhan (2021), where for
each impression, we filter out ads that could have never shown. The remaining ads constitute
our feasibility set Ai,t, which is generally a rich set of ads given the low level of targeting in our
platform. We present the details of our filtering strategy in Appendix §C.1.

The second condition in Challenge 2 also has a strong link to the causal inference literature.
While this is a predictive task, our learning algorithm may still incorrectly learn the ad effects if
there is any unobserved confounding. For example, suppose ad a1 is more likely to be shown to
less-educated adults than ad a2, but we do not observe education in our data. Now, if less-educated
adults have a higher probability of click, our learning algorithm may attribute the link between
education and click to ads a1 and a2, if it does not control for education. Unconfoundedness is what
satisfies this condition. That is, conditional on observed features g(Si,t, a), the assignment to ads is
random. We can formally show this as a proposition in our data as follows:

Proposition 1. In a setting with a quasi-proportional auction and observable targeting, the distri-

bution of propensity scores is fully determined by observed covariates.

Proof. Please see Appendix §C.2

To provide empirical support for this proposition, we estimate propensity scores using observed
features and assess covariate balance (please see Appendix §C.3). We then include these propensity
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scores ê(Si,t, a) in our feature set g(Si,t, a) to ensure that the assignment probabilities are accounted
for. This further guarantees the unconfoundedness assumption as the conditional independence is
satisfied only by conditioning on propensity scores (Rosenbaum and Rubin, 1983).

4.2.3 Value Function Approximation

Now, we discuss the final piece of our empirical framework to develop an optimal dynamic policy.
Recall the publisher’s optimization problem in Equation (10):

arg max
a∈Ai,t

[
R(Si,t, a) + βESi,t+1|Si,t,aV (Si,t+1)

]
.

In §4.2.1 and §4.2.2, we show how we can get the reward R(Si,t, a), as well as the law of motion as
captured by the expectation ESi,t+1|Si,t,a from the equation above. The unknown part is the value
function V that captures future rewards. We can use Bellman equation to characterize this value
function in a recursive relationship as follows:

V (Si,t) = maxa∈Ai,t
R(Si,t, a) + βESi,t+1|Si,t,aV (Si,t+1). (13)

Since we know the reward function and law of motion, the typical approach to find the value
function is to construct a table of all states and directly find values using Equation (13). However,
this task becomes infeasible when we have a high-dimensional state space, as we need to store all
the corresponding values. We can formally characterize the computational intensity of this task as
follows:

Challenge 3. Let T denote the length of the horizon over which we want to perform our optimization,

and let N denote the number of sessions. For each session, our state space grows exponentially in

T . Specifically, for a single session i, the order of state variables would be O((2|Ai,1|)T−1), since

we need to record the entire ad sequence as well as actions (click or not click). Thus, for all sessions

the complexity order would be O((2 maxi |Ai,1|)T−1×N), where |A| is the size of our ad inventory.

To put things in perspective, even if we only have 10 ads in our inventory and want to perform
the dynamic optimization for 10 periods, each session has the complexity order of 109. Now, if
we want to that for the number of sessions in our data that is roughly one million, the order of
complexity would be 1015. As such, conventional tabular solutions in the marketing and economics
literature cannot work in our problem.

To address this challenge, we turn to the literature on value function approximation in dynamic
programming and reinforcement learning (Sutton and Barto, 2018). Our solution is to develop a
function approximation algorithm that approximates the value function instead of finding all the
values directly. That is, we want to learn a function v̂ : S → R with a set of parameters θv. This
approach can significantly reduce the time complexity since we need only an order of magnitude
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smaller subset of states to learn a function, and the representation of this function is only through
the set of parameters θv.

Before we present our algorithm, we first introduce a new notation. We define a function
Q : S × A → R to represent the entire term that the publisher maximizes in Equation (10) as
follows:

Q(Si,t, a) = R(Si,t, a) + βESi,t+1|Si,t,aV (Si,t+1). (14)

TheQ function is often referred to as the choice-specific value function in the econometrics literature
(Aguirregabiria and Mira, 2002). Given the Bellman equation in Equation (13), we can write:

Q(Si,t, a) = R(Si,t, a) + βESi,t+1|Si,t,a max
a′∈Ai,t+1

Q(Si,t+1, a
′). (15)

Now, we can use our transition function in Equation 8 and plug in our estimates for click and leave
probabilities to define Q̃t in a similar way to Equation (15) as follows:

Q̃t(Si,t, a) = ŷ(Si,t, a)+(1− l̂(Si,t, a))ŷ(Si,t, a) max
a′∈Ai,t+1

Q̃t+1(〈Si,t, a, Yi,t = 1〉, a′)

+(1− l̂(Si,t, a))(1− ŷ(Si,t, a)) max
a′∈Ai,t+1

Q̃t+1(〈Si,t, a, Yi,t = 0〉, a′),
(16)

where the first term ŷ(Si,t, a) is the current period reward, and the other two elements in the RHS of
Equation (16) capture the two transition possibilities where the session still continues – “click and
stay” and “no click and stay”.

Function Q̃t represents a plugin version of our Q function in Equation (14) at time period t,
where we directly plug in our reward and transition estimates to find the Q values.12 Our goal is
to estimate a function q̂t that approximates Q̃t. However, this task is not trivial as these functions
appear in both LHS and RHS of Equation (16). We can follow the common insight in the literature
to formulate an iterative procedure such as value iteration or backward induction to simplify the
task to supervised learning. In our framework, we focus on backward induction as it is reasonable
to assume a finite horizon because most sessions end in a few exposures. Further, for a short length
of horizon T , the backward induction algorithm runs faster than a value iteration algorithm since
value iteration may require far more iterations for convergence.

The logic behind backward induction for q-function approximation (BIQFA) is simple: from the
set of {q̂1, q̂2, . . . , q̂T}, we learn the functions one at a time in a backward order. We start with the
last time period T where the function q̂T is equivalent to our click prediction function ŷ since this is
the last period and the future rewards are assumed to be zero.13 We can then complete the RHS of
Equation (16) and obtain the plugin outcomes for any subset of states in period T − 1. These plugin

12It is worth noting that the subscript t in Q̃t is only for notational simplicity.
13Formally, we can incorporate that by setting Q̃s(·) = 0 for any s > T .
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outcomes are often referred to as Bellman backups and denoted by Q̄ (Lee et al., 2021). Once we
have these plugin outcomes, the task of estimating q̂T−1 simplifies to one of supervised learning,
where we can use our set of state variables and actions to estimate the plugin outcomes or Bellman
backups. We can continue this process until we have the full set of functions {q̂1, q̂2, . . . , q̂T}.

Before we present our algorithm in detail, we define the set of inputs and outputs of the algorithm.
Let S̃t denote a sub-sample of the state space at exposure t. The algorithm takes data D, functions
of click, leave, and propensity score estimates (ŷ, l̂, ê), length of horizon (T ), and sub-samples of
the full state space at each exposure (S̃t for all t ≤ T ) as inputs, and return the set of q-functions (q̂t
for all t ≤ T ) as outputs. Our BIQFA algorithm is presented in detail in Algorithm 1.

Algorithm 1 Backward Induction for Q-Function Approximation (BIQFA)

Input: D, ŷ, l̂, ê, T, S̃1, S̃2, . . . , S̃T . S̃t ⊂ S at exposure t
Output: q̂1, q̂2, . . . , q̂T

1: q̂T ← ŷ
2: for t = T − 1→ 1 do
3: Q̃t+1 ← q̂t+1

4: for each s ∈ S̃t, a ∈ A do
5: Q̄s,a ← Q̃t(s, a) . Create Bellman backups using Equation (16)
6: if ê(s, a) = 0 then
7: Q̄s,a = 0
8: end if
9: Zs,a ← {g(s, a), ŷ(s, a), l̂(s, a)} . Set of inputs given to the learning algorithm

10: end for
11: q̂t ← learn(Zs,a, Q̄s,a) . Any learning algorithm can be used
12: end for

A few details are worth noting about our BIQFA algorithm. First, the time-saving component
of our approximation framework is in sampling S̃t from the full state space S. As such, we want
|S̃t| to be not very large, but representative of states that would be generated under the optimal
dynamic policy, so the algorithm can learn a good approximation of the q-function at a reasonable
computational cost.14 However, the challenge is that we do not know the distribution of states under
the optimal dynamic policy before running the algorithm. Therefore, we need a good initialization
that is close to the distribution of states under the optimal dynamic policy. A good candidate is
to use an adaptive myopic policy that selects the ad with the highest reward at any point (i.e.,
argmaxa∈Ai,t

ŷ(Si,t, a) for any state variable Si,t), which is a special case of optimal dynamic policy
when β = 0. As a result, the distribution of this policy is likely close to that of optimal dynamic
14Since this is a supervised learning task, a huge discrepancy between the sample of states used for function approxima-

tion and the sample under the optimal policy can affect the performance of the q-function learned.
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policy so we use a sample of states under the adaptive myopic policy for initialization.15 The exact
size of each |S̃t| can be set a priori by the researcher or through a validation procedure described in
Appendix D.1. Second, while our set of generated features g(s, a) suffices in principle for learning
q-functions, we include click and leave predictions as features to help the learning algorithm capture
the dynamic structure more easily. As such, the specific input of q̂ functions is Zs,a, which contains
the generated features as well as click and leave estimates (line 9 of our algorithm). Third, given that
we use propensity scores in our feature set Zs,a, the learning algorithm easily learns the association
between zero propensity and zero Bellman backup.

Lastly, we discuss the convergence properties of our BIQFA algorithm. The idea of value
function approximation has been around since Samuel (1959) and Bellman and Dreyfus (1959), and
many algorithm have been proposed for this task to this date with significant practical success (Mnih
et al., 2015; Sutton and Barto, 2018). The early theoretical studies on the convergence properties of
function approximation are Gordon (1995) and Tsitsiklis and Van Roy (1996) who show under what
conditions we have convergence. The main issue is that most these requirements for convergence
are violated when we use more high-capacity learners such as deep learning or XGBoost, and it is
easy to show divergence using counterexamples (Levine et al., 2020). However, some recent studies
show that using these high-capacity function approximators generally tend to converge in practice,
as they correspond to a very large class of functions (Fu et al., 2019; Van Hasselt et al., 2018). In
the absence of theoretical convergence guarantees on our algorithm, we present some results in
Appendix D.2 to establish its strong performance in our data.

In sum, our BIQFA algorithm approximates the set of q̂1, q̂2, . . . , q̂T needed to identify the
adaptive ad sequencing policy. It is important to notice that like other function approximation
methods in the literature, the computational complexity of our BIQFA algorithm is not exponential.
Increasing the length of horizon only increases the computational complexity of our algorithm
linearly as we need to approximate a higher number of q̂t. Similarly, increasing the number of ads
increase the computational complexity polynomially, because it changes the number of observations
in for each t (line 4 of the algorithm), and the dimensionality of Zs,a. Therefore, BIQFA is scalable
to large T and number of ads. Our BIQFA algorithm differs from the conventional approaches in the
reinforcement learning literature such as Fitted Q-Iteration (FQI) in two ways. First, our approach
is model-based, that is, our algorithm uses the model-based estimates of the transition function. We
use this approach because there are probabilistic components in state transitions in our problem
that have low probability of occurring such as clicks, so a model-free approach would not perform

15We need to stress that while initialization helps the algorithm achieve higher efficiency, the algorithm works under
alternative initialization approaches. For example, we yield the same result with an initialization of states under a
fully random policy, but we need to use roughly double the size of sampled states for each t.
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very well in these domain. Our model-based estimates of the transition stabilizes the function
approximation procedure. Second, as discussed earlier, we use a backward induction solution
concept as opposed value iteration. This choice allows us to obtain a function approximation in
fewer iterations.

4.3 Evaluation

Once we identified the optimal dynamic policy for adaptive ad sequencing using our empirical
framework in §4.2, we need to evaluate this policy and compare it to other benchmarks. As such,
we need an evaluation framework that takes any policy π∗ and data D as input and evaluates the
policy in terms of the outcomes of interest, specifically the expected number of clicks per session.
This task is often referred to as counterfactual policy evaluation in the marketing and economics
literature, and off-policy policy evaluation in the reinforcement learning literature.

The fundamental problem is that the data at hand are often generated by a behavior policy πb,
which is different from the policies we want to evaluate (π∗). In a case like that, there are many
approaches to evaluate the policy π∗. The common approach in marketing and economics literature
is to use a counterfactual simulation approach, where we simulate the data given policy π, using
the estimates for reward and transition functions (Dubé et al., 2005; Simester et al., 2006). This
approach is often referred to as the direct method (DM) in the reinforcement learning literature as
it directly uses model estimates to evaluate the policy (Kallus and Uehara, 2020). An important
advantage of this approach is that it can capture the heterogeneity at the most granular level, which
is session-level in our case. That is, we can evaluate each session under a policy and examine
which sessions have higher gains. On the other hand, the main issue with the DM is that reward
and transition estimates may be largely biased in the absence of randomization, which results in a
biased policy evaluation. In our setting, we have randomization in ad allocation that satisfies the
unconfoundedness assumption. Thus, the typical challenges with the DM approach are not present
in our setting.

Nevertheless, there is still an important challenge in DM when it comes to policy evaluation:

Challenge 4. Let DModel denote the data used for policy identification, and DEvaluation denote the

data used for policy evaluation. If DModel = DEvaluation, then our evaluation always shows a better

performance for the identified optimal dynamic policy, because our policy identification framework

chooses a policy if it is best-performing given DModel and models trained on it.

This is an important theoretical issue, which is often unaddressed in counterfactual policy
evaluation in the structural econometrics literature. To ensure that our imposed structure does not
force a certain outcome, we follow the insights from the evaluation approach in Mannor et al. (2007)
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and double q-learning in Hasselt (2010) for de-biasing the value function estimates through sample
splitting such that DModel ∩ DEvaluation = ∅. We call this approach honest direct method (HDM) and
present it in the step-by-step procedure as follows:

• Step 1: We split the data into three parts: DModel, DEvaluation, and DTest.

• Step 2: We use our modeling data DModel to estimate functions needed for policy identification:
ŷM , l̂M , and q̂Mt for any t (notice that superscript M refers to the data used for estimation). We
can use these functions to identify the optimal policy πM .

• Step 3: We use our evaluation data to estimate the model primitives: probability of click and
leave. The functional estimates of these primitives are denoted by ŷE and l̂E . We use these
estimates to simulate the data under any counterfactual policy, where superscript E refers to the
fact that we use the evaluation data.

• Step 4: For any session in DTest, we use our policy πM from Step 2 and our estimates ŷE and l̂E

from Step 3 to simulate the data under the policy and evaluate its outcomes. While we can run
large-scale simulations to evaluate the outcome, there is an analytical derivation for our Honest
Direct Method (HDM). For any exposure t, let gt denote a t-step trajectory of states, actions,
and rewards as follows:

gt = 〈s1, a1, r1, . . . , st−1, at−1, rt−1, st, at, rt〉, (17)

where s, a, and r denote state, action (ad), and the reward outcome respectively. The probability
of any arbitrary gt is determined by the policy πM and transition functions ŷE and l̂E . For
brevity, we use γE to denote the joint distribution of transitions. The trajectory gt comes from
the joint distribution (πM , γE), where the policy comes from Step 2 and transitions come from
Step 3 to satisfy our honesty criteria, which means that the data and models used for policy
identification are different from those used for policy evaluation. Now, for any session i with
initial state Si,1 and policy πM , we can define the policy evaluation function ρ as follows:

ρ(πM ;Si,1, T ) = Egt∼(πM ,γE)

[
T∑
t=1

βt−1rt | s1 = Si,1

]
, (18)

where T denotes the horizon length and the expectation is taken over all trajectories. While all
trajectories is a massively large set, we can develop different algorithms to perform this task
more efficiently and find ρ(πM ;Si,1, T ). We describe the algorithm we use in Appendix §E.1.

Overall, by splitting our data into three sets, our HDM approach overcomes two important issues
with a model-based evaluation – (1) using a separate test set to perform policy evaluation avoids
the issues of overfitting, and (2) separating the modeling and evaluation data sets ensures that the
imposed structure of policy evaluation does not systematically favor one policy over another. That

27



is, any other policy can theoretically outperform our optimal dynamic policy. Finally, it is worth
noting that with a large T , this exact evaluation procedure can become computationally intensive
for policies that depend on the past history. A simple solution in these cases is to simulate a few
instances for each session and take the average outcome.

4.4 Practical Considerations and Implementation

While our framework is set up more generally to be broadly applicable to other domains, there are
many elements that we need to set given the context, such as the length of the horizon or the size of
action space (ad inventory). We discuss these practical details in this section as follows:

• First, we need to set the length of horizon T . From our data, we observe that over 85% of
sessions end in 10 or fewer exposures (Figure 5b). As such, T = 10 is a reasonable choice
as the majority of events happen in the first ten exposures. However, it is worth emphasizing
that the computational complexity increases only linearly in T in our function approximation
framework.

• Second, we need to define the ad inventory. An obvious choice would be to focus on our
inventory’s entire set of ads. While our framework is computationally scalable to having a
large action space, it would be practically difficult to obtain accurate, personalized estimates for
ads with low frequency in data. As a result, we only focus on the top 15 ads with the highest
frequency in our data that collectively generate over 70% of all impressions.16

• Third, we need to set a splitting rule for DModel, DEvaluation, and DTest. We split our data at the
user level according to an approximately 40-40-20 percent rule such that DTest contains sessions
for 20% of users and DModel and DEvaluation each represents 40% of users. The specific details of
our splitting procedure is presented in Appendix §E.2.

• Fourth, we need to choose a learning algorithm and a validation procedure for the task of
estimating click and leave outcomes, i.e., functions ŷM , l̂M , ŷE , and l̂E . Generally, one could
use any learning algorithm to estimate these functions. In our study, we use the Extreme Gradient
Boosting (XGBoost henceforth) method developed by Chen and Guestrin (2016), which is a
fast and scalable version of Boosted Regression Trees (Friedman, 2001). There are some key
reasons why we use XGBoost as our main learning. First, it has been shown to outperform most
existing methods in most prediction contests, especially those related to human decision-making
like ours (Chen and Guestrin, 2016). Second, Rafieian and Yoganarasimhan (2021) show that in
the same context, XGBoost achieves the highest predictive accuracy compared to other methods.
Following the arguments in Rafieian and Yoganarasimhan (2021), we use the logarithmic loss as

16Each one of these top 15 ads has been shown at least in 1% of all impressions.
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our loss function. To tune the parameters of XGBoost, we use a hold-out validation procedure
to prevent the model from over-fitting. We select the hyper-parameters accurately using a grid
search over a large set of hyper-parameters and select those that give us the best performance on
a hold-out validation set. For more details, please see Appendix F.

• Fifth, for the task of q-function approximation in our BIQFA algorithm, we need to specify a
learning algorithm. For internal consistency, we use XGBoost as our learning algorithm.

In sum, the choices above are made not because of the limitations in our framework but rather
according to the specifics of our context. In a different context, one may need to change these
decisions to get the best out of this framework. It is worth noting that our empirical application
does not face the cold-start problem. We separately discuss the robustness of our framework to the
cold-start problem in Appendix G by presenting solutions to address the problem in Appendix G.1
and G.2.

5 Results
In this section, we present our results. First, in §5.1, we present some results on the predictive
accuracy of our machine learning models for click and leave estimation. Next, in §5.2, we perform
counterfactual policy evaluation and document the gains from adopting our adaptive ad sequencing
framework over a series of benchmarks. Finally, we explore the mechanism and develop descriptive
tools to explain the gains from our framework in §5.3.

5.1 Predictive Accuracy of Machine Learning Models

In this section, we examine the predictive accuracy of our click and leave estimation models. We
focus on two different metrics that capture different aspects of the predictive performance:

• Relative Information Gain (RIG): This metric reflects the percentage improvement in logarith-
mic loss compared to a baseline model that simply predicts the average CTR for all impressions.
We use RIG as our primary metric as it is defined based on the log loss, which is the loss function
we used in our XGBoost models to estimate click and leave outcomes.

• Area Under the Curve (AUC): It determines how well we can identify true positives without
identifying false positives. This score ranges from 0 to 1, and a higher score indicates better
performance and greater classification.

These two metrics are commonly used to evaluate the predictive performance of click prediction
models. In general, RIG is more relevant when we want to evaluate how well our model estimates
the probabilities, whereas AUC demonstrates how good a classifier our model is. For both metrics,
a higher value means better performance.
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Model Outcome Training Metric Sample

Sample DModel DEvaluation DTest

ŷM Click DModel
RIG 0.2123 0.1988 0.2021
AUC 0.8229 0.8110 0.8139

ŷE Click DEvaluation
RIG 0.2019 0.2175 0.2024
AUC 0.8138 0.8283 0.8138

l̂M Leave DModel
RIG 0.1009 0.0882 0.0881
AUC 0.7189 0.7055 0.7047

l̂E Leave DEvaluation
RIG 0.0880 0.1005 0.0877
AUC 0.7051 0.7188 0.7045

Table 3: Predictive accuracy of XGBoost models for click and leave estimation.

5.1.1 Results from Click and Leave Estimation Models

We now evaluate the predictive performance of our click and leave estimation models. As discussed
earlier in §4.3, our honest direct method estimates two separate models for each outcome – one
using the modeling data DModel, and the other using the evaluation data DEvaluation. This gives us a
total of four models ŷM , ŷE , l̂M , and l̂E . We present both RIG and AUC for each of these models
when evaluated on modeling, evaluation, and test samples separately.

We present our results in Table 3. In the top two panels, we examine the predictive accuracy
of our click models. The model achieves an over 0.20 RIG on the test set, which demonstrates a
substantial predictive accuracy compared to the literature (Yi et al., 2013). Further, both in- and
out-of-sample, our click models achieve an AUC of over 0.80, which shows a good classification
performance by the model.

The last two panels in Table 3 show how our leave models perform. Unlike our click models,
we do not expect our leave model to reach a very high predictive accuracy because app usage is
less dependent on ad exposures and more driven by the app. This is particularly challenging for
a messenger app where users’ decision to leave primarily stems from their messaging behavior,
which is unobserved to the advertising platform. Despite these limitations, both our RIG and AUC

measures show information gain from our predictive model compared to average estimators. Thus,
our approach to endogenize usage is advantageous over a bulk of papers in the literature that rely
on simple average estimates for continuation probabilities (Kempe and Mahdian, 2008; Kar et al.,
2015; Sun et al., 2017).17

17The closest approach to ours is Wilbur et al. (2013) that use more contextual and behavioral information to estimate
continuation probabilities. We extend that approach by using a richer set of features and a more flexible learner.
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5.1.2 Value of Different Pieces of Information

We use a rich set of features to build our models. We now want to see which pieces of information
contributed more towards building a better predictive model. Consistent with our feature categories
in §4.2.1, we define four categories that vary in the granularity and level of personalization they
can allow: (1) ad+timestamp which comprises the identities of ads shown and the timestamp of
the impression but does not include personal information that requires any form of tracking, (2)
demographic features that are raw characteristics about the user such as location and smartphone
brand, hence containing some personal information, (3) historical features that are constructed based
on the user’s past behavioral history (e.g., ads seen and clicks), and require user tracking up until
the current session, and (4) session-level features that goes one step beyond historical features and
collects similar information about the user’s current session, thereby requiring advanced real-time
tracking. We want to compare the contribution of these four different pieces of information to the
predictive performance of our models.

An interesting characteristic of Gradient Boosted Trees is the ability to return the importance of
features based on the number of times each feature is selected for splitting and the corresponding
empirical improvement (Friedman, 2001). As such, we automatically know the importance measures
from every single feature. Since the four feature categories include mutually exclusive sets of
features, we sum the importance for each set to construct the total importance measure for each
category. We present the results in Figure 8. We first notice that ad+timestamp contributes to
the click model, but its contribution is modest for the leave model. This is expected as the user’s
decision to use a messenger app is likely not driven by the ad shown. Second, we find that historical

and session-level features contribute the most to the predictive performance of both click and leave
models. In contrast, the contribution of demographic features is modest for both models. This
finding highlights the importance of user tracking in building good ad response models. Finally,
while using a shorter history, session-level features are as powerful (if not more) than historical

features, which is quite promising for our main framework, as it aims to exploit these session-level

features in a dynamic fashion.
Inspired by our feature categories, we define four separate models that are progressively more

personalized by adding one feature category at a time: (1) No Personalization, which only uses
ad+timestamp as inputs, (2) Demographic Personalization that adds demographic features to the
first model, (3) Demographic+Historical Personalization, which adds the set of historical features
to the second model, and uses all the features except the real-time session-level features, and (4)
Adaptive Personalization, which combines all the features including the real-time session-level

features. We estimate both click and leave outcomes using these inputs and present the predictive
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Figure 8: Feature importance of different feature categories in estimating click and leave outcomes.

Level of Personalization
Click Model Leave Model

RIG AUC RIG AUC

No Personalization 0.0288 0.6702 0.0030 0.5354
Demographic 0.0432 0.6857 0.0042 0.5423
Demographic+Historical 0.1567 0.7937 0.0798 0.6941
Adaptive (all features) 0.2021 0.8139 0.0881 0.7044

Table 4: Predictive accuracy of models with different levels of personalization.

accuracy of these models in Table 4. The results paint a consistent picture with Figure 8: adding
historical and session-level features result in a substantial performance increase. Specifically,
the value of session-level features serves as a primary motivation for our adaptive ad sequencing
framework.

5.2 Counterfactual Policy Evaluation

We now use our honest direct method (HDM) to evaluate the performance of our adaptive ad
sequencing framework and compare it to competing benchmarks. We refer to the policy developed
by our framework as fully dynamic or adaptive forward-looking interchangeably throughout. We
now define a series of competing policies for benchmarking18:

• Adaptive Myopic Policy: This policy uses all the information available at any exposure and
selects the ad that maximizes the reward at that point, i.e., the highest CTR. This policy is myopic
as it ignores the expected future rewards and is equivalent to β = 0 in our MDP in Equation (10).
However, this policy is adaptive because it uses the real-time updated session-level features as it

18We further formalize these benchmark policies in Appendix §H.1 and discuss the time complexity of identifying each
policy as well as the Fully Dynamic policy in §H.2.
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moves forward. We use this policy as the main comparison point for our framework because it
reflects the standard practice in the advertising industry, where the platforms use a version of
contextual bandit to select the ad at any point (Theocharous et al., 2015).

• Single-ad Policy: This policy selects a single ad to show for the entire session. As such,
this policy is not adaptive as it only uses pre-session information (demographic and historical
features) to select the ad with the highest CTR. Using this policy as a benchmark is important
from a managerial standpoint because it mimics the practice of using a fixed ad slot as opposed
to a refreshable ad slot. Further, it highlights the value of adaptive session-level information.

• Random Policy: This policy randomly selects an ad from the ad inventory at any point. While
this is a naı̈ve policy, it is often used in the reinforcement learning literature as a benchmark.

We document the performance of our fully dynamic policy and these three benchmarks in terms of
different outcomes in Table 5. We start with the main metric of interest in this paper – the expected
number of clicks per session. This metric determines how many clicks each policy generates in total
when we multiply it by the number of sessions. Our results in the first row of Table 5 show that
the fully dynamic policy developed by our adaptive ad sequencing framework results in substantial
gains by achieving an expected number of 0.1671 clicks per session. In particular, the fully dynamic

policy generates 5.76%, 27.46%, and 79.59% more clicks than adaptive myopic, single-ad, and
random policies respectively. The gains from our fully dynamic policy over the single-ad policy
illustrates the opportunity cost of using a non-refreshable ad slot that only shows one ad for the
entire session. More importantly, the gains from our fully dynamic policy over the adaptive myopic

policy make a compelling case for the use of dynamic optimization and reinforcement learning in
the advertising domain and call for a change in the current practice of using myopic frameworks,
particularly in cases like ours where users are exposed to multiple ads sequentially over a short
period of time.

Next, we aim to identify the primary source for the gains from the fully dynamic policy. As
discussed earlier, there are two channels through which adaptive ad sequencing can create value
– (1) by making users stay longer, thereby increasing the total number of impressions generated
(extensive margin), or (2) by making each impression more likely to receive a click (intensive
margin). We test each source using two other metrics – expected CTR for each impression and
expected session length. We find that each impression has a significantly higher probability of
receiving a click, but the increase in usage is only 0.2% compared to the adaptive myopic policy.
Thus, adaptive ad sequencing increases the total number of clicks in a session by increasing the
response rate to each ad. Later, in §5.3, we further explore the mechanism behind the increase in
response rate through sequencing.
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Metric
Sequencing Policies

Fully Dynamic Adaptive Myopic Single-Ad Random

Expected No. of Clicks Per Session 0.1671 0.1580 0.1311 0.0930
– (% Click Increase over Random) 79.59% 69.81% 40.90% 0.00%

Expected CTR (per Impression) 4.26% 4.04% 3.43% 2.42%
Expected Session Length 3.9258 3.9164 3.8246 3.8518
Ad Concentration (HHI) 0.2902 0.3178 0.3480 0.1159

No. of Users 14,084 14,084 14,084 14,084
No. of Sessions 201,466 201,466 201,466 201,466

Table 5: Performance of different sequencing policies in the test data.

Finally, we examine how concentrated the ad allocation is under each policy. We first calculate
the average share of each ad under each policy and then use the well-known Herfindahl–Hirschman
Index (HHI) to measure ad concentration. Lower HHI values indicate a lower ad concentration
and more evenly distributed shares. Naturally, we expect the random sequencing policy to have a
very low HHI as it most evenly distributes ad shares. We observe that in the fifth row of our table.
Interestingly, we find that our fully dynamic policy results in a lower HHI than both adaptive myopic

and single-ad policies. This is likely because the dynamic policy makes better use of synergies
between ads, thereby increasing the shares for less popular ads. This is an important finding because
it means that the better performance of the fully dynamic policy does not come at the expense of
less popular ads. The lower ad concentration can also have welfare impacts for consumers as they
are exposed to a more diverse set of ads.

5.3 Interpretation and Mechanism Analysis

In principle, all the differences between the fully dynamic and adaptive myopic policies stem from
the fact that only the former takes into account the expected future rewards when making a decision.
As such, we expect the fully dynamic policy to perform better than the adaptive myopic policy in
later exposures within the session. Figure 9 confirms this pattern by breaking down the expected
rewards for both policies (Figure 9a) and the gains from the fully dynamic policy over adaptive

myopic policy across exposure numbers (Figure 9b). Although the fully dynamic policy performs
worse than the adaptive myopic policy in the first two exposures, the gains from the fully dynamic

policy appear from the third exposure onwards. The existence of this pattern further highlights the
value of scalability in our framework that allows us to extract value from the later exposures.

In summary, the observed difference in Figure 9 is because of the inter-temporal trade-off
the fully dynamic policy makes as captured by expected future rewards in Equation (10), i.e.,
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(a) Expected reward over exposure number.
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(b) Percentage gain over exposure number.

Figure 9: Performance of fully dynamic and adaptive myopic policies across exposure numbers.

βESi,t+1|Si,t,aV (Si,t+1). While this additional term in the equation helps achieve a better perfor-
mance, interpretation of it is generally very hard as many factors go into the construction of value
function. Our main goal in this section is to use the domain knowledge in advertising to add to the
interpretability of our framework and share insights into the possible mechanisms behind the gains
from it. In particular, in §5.3.1, we demonstrate the heterogeneity in gains from using a fully dynamic

policy over an adaptive myopic policy and find the correlates of these session-level gains using the
historical features for each session. Next, in §5.3.2, we quantify the extent of difference between
the two policies and show how the historical features help explain these discrepancies. Finally, in
§5.3.3, we further explain how the two policies are different in their session-level features.19

5.3.1 Heterogeneity in Gains Across Past Historical Features

In this section, we want to better understand the heterogeneity in gains from fully dynamic over
adaptive myopic policy. As such, we need to first formally define gains. Let πMd and πMm denote
the fully dynamic and adaptive myopic policies identified using the modeling data DModel. For each
session i, we use Equation (18) to define the variable Gaini as follows:

Gaini =
ρ̂(πMd ;Si,1, T = 10)

ρ̂(πMm ;Si,1, T = 10)
− 1, (19)

where ρ̂(πMd ;Si,1, T = 10) and ρ̂(πMm ;Si,1, T = 10) represent the expected number of clicks for the
first 10 exposures of session i with initial state variables Si,1, under fully dynamic and adaptive

myopic policies respectively. The variable Gaini measures the percentage improvement in expected
rewards from the fully dynamic over adaptive myopic policy for any specific session. Thus, it allows
us to document the heterogeneity in gains across sessions.

19It is worth emphasizing that our approach in this section is fully exploratory and descriptive.
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Figure 10: Average gains from dynamic policy over myopic policy across quintiles for the number
of past sessions.

We first focus on a simple variable that is available prior to any session: the number of previous
sessions the user has experienced. We want to see how the gains change with the number of
prior sessions. On the one hand, we know that a richer history helps learn user preferences more
accurately. This can favor the fully dynamic policy and increase gains because this policy will
use more accurate predictions about session dynamics (e.g., how long the session will last). On
the other hand, more experience comes with a higher variety of prior ads, which reveals more
about ad-specific user preferences. This increase in predictive accuracy can make the two policies
more similar, thereby reducing gains. Further, we know a higher variety of ads in the past reduces
the novelty of ad interventions in the present, which can reduce the effectiveness of sequencing
strategies. For example, Rafieian and Yoganarasimhan (2022a) show that as users become more
experienced, the impact of an increase in variety decreases. We want to show how the mix of the
opposing forces described above would shape the overall relationship between the number of prior
sessions and gains. For all the sessions in our test data, we define five quintiles based on the number
of prior sessions.20 We show the average gains for each quintile in Figure 10. Interestingly, we find
a U-shaped pattern consistent with the opposing accounts presented above. Later in §5.4, we show
that the U-shaped pattern is robust to alternative specifications.

Inspired by the pattern in Figure 10, we further document the heterogeneity in gains across a
richer set of historical covariates. We first include two historical features that are correlated with
the number of prior sessions and correspond to the opposing accounts presented above: (1) the

20Each quintile contains 20% of all sessions, with quintile 1 being the bottom 20% of values.
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Historical Features Dependent Variable: Gaini
(1) (2) (3) (4)

No. of Past Impression 0.00001∗∗∗ 0.00001∗∗ 0.00001∗∗∗ 0.00001∗

(4.60) (3.00) (3.40) (2.07)
Variety of Ads Seen −0.00024∗ −0.00028∗∗ −0.00021∗ −0.00033∗∗

(−2.43) (−2.79) (−2.10) (−3.28)
No. of Past Clicks 0.00076∗∗∗ 0.00080∗∗∗ 0.00080∗∗∗

(3.70) (3.89) (3.91)
Time Since Last Session 0.00008∗∗∗ 0.00007∗∗

(4.84) (4.17)
Last Session Length 0.00036∗∗∗

(22.23)

User Fixed Effects X X X X
Hour Fixed Effects X X X X
No. of Obs. 190,206 190,206 190,206 190,206
R2 0.271 0.271 0.271 0.273
Adjusted R2 0.220 0.220 0.220 0.222

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 6: Heterogeneity in gains from dynamic policy over myopic policy across the historical
features. Numbers in parenthesis are t-statistics that are estimated using OLS.

number of past impressions, and (2) the variety of ads seen. We expect a positive association in the
former as it demonstrates the amount of data available, whereas a negative association in the latter
as a higher variety of ads seen likely makes the policies more similar and users less responsive to
sequencing. We regress gains for each session on these two covariates while controlling for user
and hour fixed effects to ensure our estimates do not capture user-level differences and supply-side
factors such as advertisers’ targeting and availability. We exclude the first session for each user
because the historical features do not exist for those sessions. We present the results of this model
in the first column of Table 6. Our results provide further support for the two accounts presented
earlier. The coefficient for the number of past impressions is positive, whereas the coefficient for
the variety of ads seen is negative. Together, having seen more impressions increases the gains,
whereas having seen more distinct ads decreases the gains.

In columns 2–4, we add historical features one by one. We first add the number of past clicks

prior to the current session. A higher value of this covariate indicates a greater ad response and
overall engagement with ads. As shown in the second column of Table 6, this covariate has a
positive association with gains from ad sequencing. Next, we include another historical feature
– the time since the last session (in hours). Higher values of this covariate show lower recency
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in users’ interaction with ads. In general, we expect higher recency to reduce the novelty of ad
interventions, thereby lowering the gains from ad sequencing. We confirm this prediction by finding
a positive coefficient for the time since the last session in column 3 of Table 6: the greater the gap is
between the current session and the last session, the higher the gains are from sequencing. Finally,
we include the length of the last session as another covariate in our model. This covariate is a signal
for the length of the current session. As shown in Figure 9, gains from sequencing appear later
in a session. Hence, when the session is longer, we expect the gains to be higher. The positive
and statistically significant coefficient for the length of last session in the fourth column of Table 6
provides support for this prediction.

5.3.2 Extent of Discrepancy Between Dynamic and Myopic Policies

The key takeaway from the previous section is that there is great heterogeneity in gains from
sequencing across past historical features. These gains naturally stem from the differences between
the fully dynamic and adaptive myopic policies. In this section, we want to see where the discrepancy
between the two policies is more pronounced. As such, we first need to quantify the discrepancy
between the two policies at the session level. For any given session i and policy π, we can determine
the distribution of ad shares both analytically and through simulations. Let α(d)

i and α
(m)
i denote

vectors representing ad shares in session i under fully dynamic and adaptive myopic policies
respectively. We quantify the discrepancy between these two distributions using five measures based
on `-norm and Kullback-Leibler (KL) divergence as follows:

• Outcome 1: `1-norm of the difference between shares ‖α(d)
i −α

(m)
i ‖1

• Outcome 2: `2-norm of the difference between shares ‖α(d)
i −α

(m)
i ‖2

• Outcome 3: KL divergence of α(d)
i from α

(m)
i , i.e., DKL(α

(d)
i ‖ α

(m)
i )

• Outcome 4: KL divergence of α(m)
i from α

(d)
i , i.e., DKL(α

(m)
i ‖ α(d)

i )

• Outcome 5: Disagreement ratio, which is the fraction of ads that have non-zero share under only
one of the two policies in the set of all feasible ads.

The first four measures capture the extent of difference between ad shares, whereas the fifth measure
uses a more binary approach and compares distributions in the set of ads that could be shown. We
use these measures of discrepancy between the two policies and regress them on the set of historical
features used in the previous section. Like before, we account for user and hour fixed effects. We
present our results in Table 7, where each column shows how historical features are associated with
each of the discrepancy measures. First, we find a consistently positive coefficient for the number of

past impressions, which indicates that a richer history is associated greater differentiation between
policies. Second, when we focus on the variety of ads seen, we find some weak negative links for
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DV: Discrepancy between Ad Distributions under Dynamic and Myopic

(1) (2) (3) (4) (5)

Number of Past Impression 0.00043∗∗∗ 0.00019∗∗∗ 0.00111∗∗∗ 0.00053∗∗∗ 0.00005∗∗∗

(45.43) (48.44) (46.27) (59.47) (23.16)
Variety of Ads Seen −0.00099∗ 0.00022 0.00109 −0.00096∗∗ −0.00180∗∗∗

(−2.57) (1.41) (1.10) (−2.62) (−19.56)
Number of Past Clicks −0.01496∗∗∗ −0.00734∗∗∗ −0.02471∗∗∗ −0.01568∗∗∗ 0.00028

(−19.22) (−22.85) (−12.39) (−21.38) (1.52)
Time Since Last Session −0.00008 −0.00005∗ 0.00006 −0.00009 −0.00002

(−1.32) (−2.10) (0.38) (−1.57) (−1.03)
Last Session Length −0.00095∗∗∗ −0.00041∗∗∗ −0.00068∗∗∗ −0.00050∗∗∗ 0.00020∗∗∗

(−15.61) (−16.14) (−4.33) (−8.65) (13.56)

User Fixed Effects X X X X X
Hour Fixed Effects X X X X X
No. of Obs. 190,206 190,206 190,206 190,206 190,206
R2 0.195 0.196 0.162 0.203 0.192
Adjusted R2 0.138 0.139 0.103 0.147 0.135

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 7: Discrepancy in the distribution of ad allocation between dynamic across the historical
features. Numbers in parenthesis are t-statistics that are estimated using an OLS.

the first four measures, and a strong negative link for the fifth measure. This is likely because higher
variety of prior ads reduces the effective size of the action space by identifying poor-performing ads.

Third, we find that the number of past clicks is associated with more similar shares between
the two policies (negative and significant coefficients in columns 1–4), but not associated with any
difference in the effective set of ads with a non-zero probability (insignificant coefficient in column
5). This is likely because the existence of past clicks does not necessarily change the effective action
space, but substantially increases the probability of a particular set of ads across both policies (e.g.,
ads similar to the ad that is already clicked on). Fourth, coefficients for our measure of recency –
time since the last session – are all insignificant, indicating no association between usage recency
and discrepancy between policies.

Finally, we examine the link between the last session length and the discrepancy measures. In
general, we expect a longer session to increase the discrepancy between the two policies because
the fully dynamic policy has richer dynamics and more opportunities to differentiate. Surprisingly,
we find that a higher session length is associated with more similar shares (columns 1–4) but more
disagreement in the set of ads that could be shown (column 5). One potential explanation is that the
discrepancy captured by our first four measures is more pronounced if the session is short. That is,
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Figure 11: Distribution of session-level features at different exposures under different policies.
Error bars refer to 95% confidence intervals when we compare the two samples.

although a longer session makes the set of ads more different, the probabilities become closer as
they capture the specifics of leave probabilities.

5.3.3 Distribution of Session-level Features Under Different Policies

The previous section focused on the discrepancy between the session-level ad distributions of
both fully dynamic and adaptive myopic policies. While Table 7 showed how the magnitude of
discrepancy varies across sessions based on their pre-session characteristic, it did not show how
these sessions are different from each other. In this section, we narrow down our focus to session-
level differences between the two policies. In particular, we examine how the two policies are
different in their use of two features that are widely used in the advertising literature: frequency
and spacing. We run a simulation to generate one data set under each policy and then compare
session-level frequency and spacing between these two policies.

We plot these two session-level features under each policy across exposures in Figure 11. We
first use the past session-level frequency of the ad selected at each exposure, which is the number of
times that ad has been shown in the prior exposures within the session. Figure 11a shows an overall
similar pattern, but a higher use of ad frequency under the adaptive myopic policy compared to our
policy towards the end of the session. We also find that the average frequency in the full data set
generated under the adaptive myopic policy is significantly higher than the average frequency under
the fully dynamic policy.

Next, we focus on session-level spacing for the ad shown, i.e., the gap between the current
exposure and the last time the same ad has been shown in the session, as measured by the number
of exposures between the two exposures of the same ad. Our results in Figure 11b show a higher
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average spacing under our policy compared to the adaptive myopic policy towards the end of the
session. When we consider the entire data sets, the average spacing is significantly higher under the
fully dynamic policy, compared to the adaptive myopic policy.

In sum, we can interpret the overall patterns shown in Figure 11 through the lens of the attention-
based behavioral account proposed in Rafieian and Yoganarasimhan (2022a). As suggested in that
paper, lower frequency and higher spacing are positively correlated with the perceived novelty of
the ad stimuli (Helson, 1948). Hence, one possible conclusion is that our fully dynamic policy
better manages users’ attention compared to the adaptive myopic policy, particularly towards the
end of the session. The lower use of ad frequency under our policy can also explain the lower ad
concentration found in Table 5.

5.4 Robustness Checks

We run a series of tests to check the robustness of the results presented in previous sections. We
first establish the robustness of our results to different initializations of our framework, such as
the number of ads in the action space (please see Appendix I.1), length of horizon (please see
Appendix I.2), and the specific modeling and evaluation data sets used (please see Appendix I.3).
We replicate our main qualitative results with these different initializations. We further demonstrate
the robustness of our results by comparing the performance of our framework to other benchmarks,
such as the one presented in Sun et al. (2017) and a pre-defined sequencing policy that does not
utilize real-time information in Appendix I.4. Finally, we present the robustness of the U-shaped
pattern in Figure 6 and our results in Table 6 to alternative specifications in Appendix I.5.

6 Implications
Our findings have several implications for managers and marketing practitioners, as we focus
on the problem of value creation in advertising marketplaces. In particular, we demonstrate that
incorporating within-session dynamics through our adaptive ad sequencing framework creates
value in the marketplace by enhancing user engagement with ads, when compared to a series of
benchmark policies such as the single ad policy that mimics the case for a non-refreshable ad slot,
and adaptive myopic policy, which is the dominant allocation strategy used by firms (Theocharous
et al., 2015). To that end, our findings have important applications for the publishers on what ad
format to use (refreshable or non-refreshable), and more importantly, what kind of allocation policy
to adopt (myopic vs. forward-looking). Specifically, our results suggest that the industry standard
(adaptive myopic policy) leaves considerable value on the table, thereby calling for a change in the
current practice in the industry, particularly because the computational cost of our framework is
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only slightly higher than an adaptive myopic framework.21

It is worth emphasizing that the framework is general and all ad platforms can use our framework
to measure the gains in user engagement from adopting a fully dynamic framework, as long as there
is unconfounded randomization in ad allocation. Although ad platforms often use deterministic
auctions such as first- or second-price auctions for ad allocation, they can still incorporate some
level of randomization through ε-greedy approaches (Theocharous et al., 2015) or small-scale
experimentation (Ling et al., 2017). Similarly, platforms can use other measures of user engagement
as the reward function and different optimization horizon, depending on the context. Thus, the
applicability of our framework does not depend on the specific empirical setting in this paper.

Our sequencing framework can also be readily implemented in cases where a platform wants
to sequence content to achieve optimal user-level outcomes. In particular, the improvement in ad
response as a result of sequencing motivates a wide range of marketing applications that are closely
related to advertising, such as sequencing promotional emails and notifications in an online retail
context, sequencing articles in news websites to increase audience engagement, sequencing social
media posts to enhance user experience, and sequencing push notifications for churn management.
More broadly, our framework can be extended to other contexts where we want to use persuasive
messaging through adaptive interventions. For example, in the context of mobile health, a growing
body of work focuses on Just-In-Time Adaptive Interventions (JITAI) in mobile apps and studies
their impact in shaping consumers’ health behavior, including physical fitness and activity, smoking,
alcohol use, and mental illness (Nahum-Shani et al., 2017). Similarly, in the context of education,
these adaptive interventions can be used to improve students’ motivation and outcomes (Mandel
et al., 2014). These showcases can also inspire the public sector to use these tools in cases where
collective action is required, such as environmental protection and political participation.

7 Conclusion
Mobile in-app advertising has grown exponentially over the last few years. The ability to exploit
the time-varying information about a user to personalize ad interventions over time is a key factor
in the growth of in-app advertising. Despite the dynamic nature of the information, publishers
often use myopic decision-making frameworks to select ads. In this paper, we examine whether
a dynamic decision-making framework benefits the publisher in terms of the user engagement
with ads, as measured by the number of clicks generated per session. Our dynamic framework

21It is worth noting that our framework is readily applicable to non-strategic environments where the publisher wants to
maximize user engagement, such as allocating impressions in contexts where ads are sold in bulk in pre-negotiated
reservation contracts. In real-time bidding auction environments where advertisers can strategically respond to the
change in allocation, we need to design strategy-proof auctions that achieve the publisher’s objective. Rafieian (2020)
studies these strategic environments and proposes a revenue-optimal auction for adaptive ad sequencing.
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has three main components: (1) a theoretical framework that models the domain structure such
that it captures inter-temporal trade-offs in the ad allocation decision, (2) an empirical framework
that breaks the policy identification problem into a combination of machine learning tasks that
achieve sequence personalization, counterfactual validity, and scalability, and (3) a policy evaluation
method that is separate from policy identification, thereby allowing a robust counterfactual policy
evaluation. We apply our framework to large-scale data from the leading in-app ad network of an
Asian country. Our results indicate that our adaptive ad sequencing policy results in significant gains
in the expected number of clicks per session compared to a set of benchmark policies. In particular,
we show that our policy results in 5.76% more clicks, on average, compared to the adaptive myopic
policy that is the current state of practice. Almost all these gains stem from an increase in average
response to each impression instead of increased usage by each user. Next, we document extensive
heterogeneity in gains from adaptive ad sequencing and find a U-shaped pattern for gains over the
length of users’ past history, indicating that gains are highest for either new users or those whose
past data are rich. As for the policy difference between adaptive ad sequencing and adaptive myopic,
we find that our policy results in a greater ad diversity, which can be because our policy better
manages user attention by showing a more diverse set of ads.

Our paper makes several contributions to the literature. First, from a methodological point-
of-view, we develop a unified dynamic framework that starts with a theoretical framework that
specifies the domain structure in mobile in-app advertising and an empirical framework that breaks
the problem into tasks that can be solved using a combination of machine learning methods and
causal inference tools. Notably, the BIQFA algorithm in our framework achieves scalability without
imposing simplifying assumptions on the dynamics of the problem. Second, from a substantive
standpoint, we document the gains from adopting an adaptive forward-looking sequencing policy. In
particular, we show a 5.76% gain in clicks from adopting our fully dynamic policy over the adaptive
myopic policy, and establish its robustness across a series of robustness checks. This comparison is
of particular importance as the adaptive myopic policy is currently the standard approach in the
industry. We further present a comprehensive study of heterogeneity and document key differences
between our policy and adaptive myopic policy, which is of great value to managers who need to
interpret the gains and understand when and why the framework is most valuable.

Nevertheless, our study has some limitations that serve as excellent avenues for future research.
First, our counterfactual policy evaluation is predicated on the assumption that users do not change
their behavior in response to sequencing policies. While we exploit randomization to obtain our
counterfactual estimate, it would be important to validate these findings in a field experiment.
Further, we use the training data offline to learn counterfactual estimates for click and leave
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outcomes. Extending our framework to an online setting that captures exploration/exploitation
trade-offs is important since online approaches are more cost-efficient and robust to cold-start
problems. Finally, we use the entire within-session history to update state variables. Future research
can look into more parsimonious frameworks that can be scalable to longer time horizons.
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Appendices
A Summary Statistics
In this section, we present a few useful summary statistics about our data.

A.1 Probability of Different Transitions Across Exposure Numbers

A primary goal of our paper is to develop a fully dynamic policy that incorporates the transition
dynamics of the problem when making decisions. For each exposure t, there are three probabilistic
transition scenarios to the next exposure t+ 1: (1) Click and Stay, where the user clicks on exposure
t and stays in the app to see exposure t+ 1, (2) No Click and Stay, where the user does not click
on exposure t and stays in the app to see exposure t+ 1, and (3) Leave, where the user leaves the
session. For each exposure, we calculate the proportion of each of these three transition scenarios
and present the results in Figure 12. A few interesting patterns emerge from this figure. First,
we notice that Click and Stay has a small but non-zero probability. That is, the session does not
end when the user clicks on an ad. Digging further, we find that the probability of leave at any
point conditional on a click at that point is 0.2071, which means that only one-fifth of all click
impressions result in the user leaving the session. Second, Figure 12 illustrates that the leave rate
at different exposures. We notice an overall decreasing pattern in the leave rate across exposure
numbers. However, the trend is present at all exposures. For example, the second exposure has a
higher leave rate than the first exposure. This is inconsistent with one of the common assumptions
in some of the work on dynamic ad allocation (Sun et al., 2017).

A.2 Shares of Ads

Overall, there are 328 ads shown in our sample of impressions in the top app. Each ad constitutes
a different fraction of the total impressions in our sample. More popular ads that are available
for more auctions with a competitive bid are shown more frequently in the data, and ads that are
available only for a short period of time are only shown in a tiny fraction of all impressions. To
illustrate this heterogeneity across ads, we first calculate the impression share for each ad and
then sort them with respect to their shares. This sorting gives us the list of top k ads in terms of
frequency: for example, the top 10 ads are the 10 ads with the highest shares. For each k, we
calculate the cumulative share of top k ads and visualize it in Figure 13. This figure documents
substantial heterogeneity across ads, with the top ad accounting for roughly 18% of the total traffic
and the top 15 ads accounting for over 70% of all impressions.
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B Feature Generation
As discussed earlier, our goal is to estimate click and leave outcomes for any combination of ad
and state variables, as shown in Equations (11) and (12). A major challenge in estimating these
equations is that the set of inputs is quite large, containing the entire sequence of prior ads shown
to the user. In this section, we present a feature generation framework that maps a combination of
state variables and ads (〈Si,t, a〉) to a set of meaningful features g(Si,t, a) that we can give as inputs
to our learning algorithm. Ideally, we need our final set of features to fully represent 〈Si,t, a〉 in
a lower dimension without any information loss. Thus, we generate a set of features that help us
predict users’ clicking behavior and app usage based on the prior literature on advertising.

We categorize these features into three groups: (1) ad+timestamp, (2) demographic features, (3)
historical features, and (4) session-level features. The first group contains contextual information
about the impression as it captures the exact timestamp of the impression. Demographic and
historical features relate to the pre-session state variables (Xi), whereas session-level features relate
to the session-level variables (Gi,t). Figure 14 provides an overview of our feature generation
and categorization. In this example, the user is at her fourth exposure in her third session. The
features for this particular exposure include the observable demographic features, historical features
generated from the prior sessions, and session-level features that are generated from the first three
exposures shown in the current session. Clearly, we do not use any information from the future
to generate a feature: at any point, we only use the prior history up to that point. In the following
sections, we describe all these features in detail.

B.1 Ad+Timestamp

This group of features contains the non-personal information about the impression: the timestamp
of an impression and the ad shown in that impression. As such, this category of features does not
require any user-level tracking.

B.2 Demographic Features

This includes the variables that we already observe in our data (see §3.2), such as the province,
latitude, longitude, smartphone brand, mobile service provider (MSP), and connectivity type. For
any session i, we use Di to denote the set of demographic features. These features do not transition
based on the ad that the publisher shows at any time period. As such, we do not use subscript t for
them.22 We include these features because of two reasons. First, these features help predict both
users’ clicking behavior and app usage. Second, the targeting variables are the main confounding

22One could argue that features such as latitude and longitude may change within the session. While this is possible, it
is unlikely to happen due to the publisher’s ad interventions. Further, the sessions are usually short, and we rarely
observe such a change in our data.
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Figure 14: A visual schema for our feature generation and categorization.

source, and controlling them guarantees that we control for the propensity score of ads when
estimating the outcomes. In light of our discussion in §4.2.2 and Proposition 1, it is sufficient to
control for these demographic features because conditional on these features, the ad allocation is
random.

B.3 Historical Features

Historical features reflect the user’s past activity prior to the current session. While demographic
features are available in the data, we need to generate historical features based on the pre-session
information. These features are not adaptive because we only use the pre-session information to
generate them. As such, these features are part of Xi and remain unchanged within the session.

To generate historical features, we use the insights from the prior literature on dynamics of
advertising on the effects of prior ad frequency (Nerlove and Arrow, 1962; Dubé et al., 2005),
recency or spacing according to memory-based models (Sawyer and Ward, 1979; Naik et al., 1998;
Sahni, 2015; Aravindakshan and Naik, 2015), and ad response (Rafieian and Yoganarasimhan,
2021). We build large inventory matrices to contain the information regarding the past frequency,
spacing, and ad response of each ad. For session i, let ui denote the user in that session. Below, we
present the detailed set of our historical features along with their definition:

• HistFreqAd(a)
i : For any ad a ∈ A, this feature counts the number of times ad a has been shown

to user ui in the prior sessions. Together, with all ads, these features contain the frequency
inventory for the prior history.

• HistSpaceAd(a)
i : For any ad a ∈ A, this feature counts the space (in terms of number of

exposures) between the first impression in session i and the last time ad a has been shown.
Together, with all ads, these features contain the spacing inventory for the prior history.

• HistClickAd(a)
i : For any ad a ∈ A, this feature counts the number of times ad a has been clicked
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by user ui in the prior sessions. Together, with all ads, these features contain the click inventory
for the prior history.

• HistImpi: The total number of impressions user ui has seen prior to session i, i.e., HistImpi =∑
a∈AHistFreqAd(a)

i .

• HistClicki: The total number of clicks user ui has made prior to session i, i.e., HistClicki =∑
a∈AHistClickAd(a)

i .

• HistImpAppi: The total number of impressions user ui has seen in the top app prior to session i.
This feature may differ from Impi because the user may have used other apps.

• HistClickAppi: The total number of impressions user ui has clicked in the top app prior to
session i. This feature may differ from Clicki because the user may have used other apps.

• ExposureImp(t)
i : For any t ≤ 10, the feature counts the number of times user ui has seen at

exposure number t in prior sessions. In other words, it counts the number of times in prior
sessions that the user ui stayed in the session to receive exposure t. As such, this feature captures
usage patterns in the user’s behavior.

• ExposureClick(t)i : For any t ≤ 10, the feature counts the number of times user ui has clicked at
exposure number t in prior sessions. This feature captures if there is any temporal pattern in
user’s clicking behavior.

• LastSessionLengthi: The length of last session (in number of exposures) that user ui was
exposed to prior to session i. If session i is the user’s first session, this feature takes value zero.
This feature thus captures the most recent usage behavior by the user.

• AvgSessionLengthi: The average length of the sessions (in number of exposures) that user ui
was exposed to prior to session i. This feature thus reflects the average usage behavior by the
user.

• LastGapi: The gap or free time (in minutes) user ui has had between her last session and session
i. This feature captures the usage recency by the user.

• AvgGapi: The average gap or free time (in minutes) user ui has had between her sessions prior
to session i. This feature captures the overall usage patterns by the user in prior sessions.

• HistVarietyi: The total number of distinct ads that user ui has seen prior to session i, i.e.,
HistVarietyi =

∑
a∈A 1(HistFreqAd(a)

i > 0).

• HistGiniSimpsoni: The Gini-Simpson index for ads that user ui has seen prior to session i
(Simpson, 1949). This metric captures the diversity of prior ad exposures by calculating the
probability that two random exposures from the past showed different ads. A higher Gini-
Simpson index means that the user has seen a more diverse set of ads. We can write the
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Gini-Simpson index as follows:

HistGiniSimpsoni = 1−
∑
a∈A

HistFreqAd(a)
i (HistFreqAd(a)

i − 1)

Impi(Impi − 1)
(20)

• HistShannoni: This feature calculates the Shannon entropy of ad frequencies prior to session i
(Shannon, 1948). This metric also captures the amount of information in prior ad exposures,
which takes a higher value when the frequencies are more evenly distributed. We can define the
Shannon entropy as follows:

HistShannoni = −
∑
a∈A

HistFreqAd(a)
i

Impi
log

(
HistFreqAd(a)

i

Impi

)
(21)

We further define five impression-specific historical features primarily to aid the learning algorithm
that use these features for prediction. Suppose that the impression is an ad a shown in exposure t in
the session. We can define the following features:

• ThisHistFreqAdi, which is equal to HistFreqAd(a)
i if ad a is shown in the impression.

• ThisHistSpaceAdi, which is equal to HistSpaceAd(a)
i if ad a is shown in the impression.

• ThisHistClickAdi, which is equal to HistClickAd(a)
i if ad a is shown in the impression.

• ThisExposureImpi, which is equal to ExposureImp(t)
i if the impression is the tth exposure in the

session.

• ThisExposureClicki, which is equal to ExposureClick(t)i if the impression is the tth exposure in
the session.

Please note that none of these five extra features contain any extra information over the prior set.
As such, most advanced learning algorithms can automatically use the information in these five
features without explicitly including them in the feature set. However, we included these features to
ensure that our models will capture this relationship. It is also worth emphasizing that we consider
these five features historical despite using the information about the current impression, i.e., which
exposure number it is and which ad it shows. This is because we only use the pre-session data to
generate these features. Together, we denote the full list of historical features by Hi.

B.4 Session-Level Features

The session-level features are key to our analysis because we are interested in the optimal sequencing
of ads within the session. These are the features that transition from one time period to the next.
That is, depending on the prior exposures within the session, these features will evolve. We follow a
procedure similar to historical features to generate session-level features. As such, we still have
large inventory matrices for frequency, spacing, and ad response within the session. Below is the
full list of session-level temporal features:
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• SessFreqAd(a)
i,t : For any ad a ∈ A, this feature counts the number of times ad a has been shown

within the current session. Together, with all ads, these features contain the frequency inventory
for the ongoing session.

• SessSpaceAd(a)
i,t : For any ad a ∈ A, this feature counts the space (in terms of number of

exposures) between the current exposure and last time ad a has been shown within the current
session. This feature takes value 0 if there is no prior exposure of ad a in prior sessions. Together,
with all ads, these features contain the spacing inventory for the ongoing session.

• SessClickAd(a)
i,t : For any ad a ∈ A, this feature counts the number of times ad a has been clicked

within the current session. Together, with all ads, these features contain the click inventory for
the ongoing session.

• SessImpi,t: The total number of impressions the user has seen in session i prior to exposure
number t. For any exposure number t, this feature is equal to t− 1.

• SessClicki,t: The total number of clicks the user has made in session i prior to exposure number
t, i.e., SessClicki,t =

∑
a∈A SessClickAd(a)

i,t

• SessVarietyi,t: The total number of distinct ads that the user has seen within session i prior to
exposure number t. We can define this feature as follows:

SessVarietyi,t =
∑
a∈A

1(SessFreqAd(a)
i,t > 0) (22)

• SessChangesit: The total number of consecutive changes of ads prior to the exposure number t
within the session i. We can write:

SessChangei,t =
t−1∑
j=2

1(Ai,j 6= Ai,j−1), (23)

where Ai,j is the ad shown at exposure number j in session i.

• SessGiniSimpsoni,t: The Gini-Simpson index for the ads shown within session i prior to exposure
number t. Following the same logic in Equation (20), we can write:

SessGiniSimpsoni,t = 1−
∑
a∈A

SessFreqAd(a)
i,t (SessFreqAd(a)

i,t − 1)

(t− 1)(t− 2)
(24)

• SessShannoni,t: The Shannon entropy for the ads shown within session i prior to exposure
number t. Following the same logic in Equation (21), we can write:

SessShannoni,t = −
∑
a∈A

SessFreqAd(a)
i,t

t− 1
log

(
SessFreqAd(a)

i,t

t− 1

)
(25)

Like historical features, we generate impression-specific features based on the frequency, spac-
ing, and click inventory information within the session. We can generate the following three
features:
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• ThisSessFreqAdi,t, which is equal to SessFreqAd(a)
i,t if ad a is the ad shown in exposure t in

session i.

• ThisSessSpaceAdi,t, which is equal to SessSpaceAd(a)
i,t if ad a is the ad shown in exposure t in

session i. It takes value 0 when there is no prior exposure of ad a in the session.

• ThisSessClickAdi,t, which is equal to SessClickAd(a)
i,t if ad a is the ad shown in exposure t in

session i.

For any session i and exposure number t, we denote all session-level features by Oi,t. As such,
this is the only set of features that has subscript t, indicating that it changes within the session.
Therefore, the publisher’s actions affect the transition of these features in the session. One could
argue that historical features also change within the session as the user’s history accumulates after
each exposure. It is worth noting that we do not update the history within the session because
session-level temporal features capture that information. As a result, not updating historical features
will not result in any information loss.

C Counterfactual Validity
C.1 Filtering Strategy

To address the first part of the Challenge 2, we employ a filtering strategy similar to that in Rafieian
and Yoganarasimhan (2021). In our filtering strategy, our goal is to identify the set of ads that
could have never been shown in a given impression. If an ad is not targeting one of the targeting
characteristics of an impression or is not available around the time that the impression happens, that
ad could have never been shown in that impression. As such, the feasibility of an ad in an impression
depends on two characteristics of that impression: (1) targeting characteristics, and (2) timestamp.
The targeting characteristics of an impression are province, hour of the day, smartphone brand,
connectivity type, mobile service provider (MSP), and app category. If the ad is not targeting one of
these characteristics, we do not observe this ad in any impression corresponding to that targeting
characteristic. For example, suppose that our focal impression is from a Samsung user. If ad a
is not targeting Samsung users (i.e., excluded Samsung from the targeting set), then no Samsung
impression shows ad a. Alternatively, if ad a has been shown in a Samsung impression, it means
that ad a is targeting Samsung users. Our goal is to develop a function f that takes the combination
of state variable Si,t and ad a as inputs and return a binary outcome that indicates whether ad a could

have been shown in impression with state variables Si,t. Once we get the outcomes of f(Si,t, a) for
all ads, this gives us the feasibility set Ai,t.

To develop function f , we first introduce a few notations. First, for any ad a and targeting
characteristic c, we define the function ωc,a that takes timestamp τ as the input and returns value
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one if ad a includes targeting characteristic c in his targeting criteria. Using our data, it is easy to
empirically estimate this ω function. We first need to discretize the timestamp by a certain unit
(e.g., by an hour), and then check if the set of impressions with targeting characteristic c and ad a is
non-empty in each unit of timestamp. Given the abundance of our data, we can use very granular
discretization, especially for more popular ads. We empirically find that an hourly unit works well
in our setting, and more granular discretization does not generate different results. In this empirical
approach, if there is at least one instance of ad a shown in an impression with targeting characteristic
c for the hour of timestamp τ , we have ω̂c,a(τ) = 1.

Let Ci,t denote the full set of targeting characteristics for exposure t in session i with state
variables Si,t. Further, let τi,t denote the timestamp of this exposure. We can define our feasibility
function f as follows:

f(Si,t, a) =
∏
c∈Ci,t

ω̂c,a(τi,t). (26)

This equation indicates that if ad a excludes only one of the targeting characteristics from his
targeting criteria, it could have never been shown in the impression. Now, we can construct the full
feasibility set of the set of ads that could have been shown, i.e., ads that have non-zero propensity
scores as follows:

Ai,t = {a | f(Si,t, a) = 1}. (27)

It is important to notice that for our main task in the paper, we need to construct the feasibility set
for an impression that has not been shown in the data. For example, session i may have ended in
only three exposures, but when we want to identify the optimal ad sequencing policy, we need to
identify the optimal action in any time period (e.g., optimal policy in the fifth exposure for a session
that ended in three exposures). Finding the feasibility set for these counterfactual exposures is
straightforward because the function f only uses the information about the targeting characteristics
Ci,t and the timestamp τi,t. From our targeting characteristics Ci,t, only the hour of the day varies
with t. Thus, the only element we need to impute for these counterfactual exposures is the timestamp
τi,t. Since each exposure lasts one minute, the task of imputing these timestamps is easy: we just
need to add one minute to the timestamp from the point the session has ended. For example, if the
session ends at 5:12 PM, we assume the timestamp for the next exposure would have been 5:13 PM.
This guarantees that we can identify the right feasibility set. From an empirical standpoint, however,
the feasibility set is almost identical throughout the session.

As defined in Equation (27), the size of the feasibility set Ai,t can potentially vary across
sessions based on their timestamp and targeting characteristics. In Figure 15, we show the empirical
CDF of the size of the feasibility set, once when we consider all ads (Figure 15a), and once when
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Figure 15: Empirical CDF of the session length and total number of clicks per session.

we only consider the top 15 ads that we use for our main analysis (Figure 15b). As shown in these
figures, the number of ads competing for each impression is quite variable across sessions. More
importantly, we also find that for each session, there are many ads that could have been shown,
which indicates a high degree of variation in our data and a low degree of customization. This extent
of variation is often missing in ad platforms that provide micro-level targeting since only a few ads
often participate in the auction for each impression.

C.2 Proof for Proposition 1

Proof. We want to show that for any exposure t in session i, the propensity score e(Si,t, a) is fully
determined by observed covariates. According to the allocation rule in the quasi-proportional
auction, we know that the propensity scores are determined as follows:

e(Si,t, a) = 1(a ∈ Ai,t)
bi,t,ami,t,a∑

k∈Ai,t
bi,t,kmi,t,k

, (28)

where Ai,t is the feasibility set for the exposure, and bi,t,a and mi,t,a respectively denote the bid and
quality score for ad a at exposure t in session i. If we know all bi,t,a and mi,t,a for all the ads in
all exposures, the proof would be complete since we have shown how we can identify the set of
competing ads Ai,t in Appendix §C.1. The main challenge is that quality scores are unknown to us.
However, we can use a feature of our setting to address this challenge: every ad a has only one bid
and quality score at any time. That is, bids and quality scores are not customized at the impression
level, and for any impression shown at a specific timestamp τ , each ad’s bid and quality score is the
same across impressions. As such, we can re-write the propensity score as follows:

e(Si,t, a) = 1(a ∈ Ai,t)
ba(τi,t)ma(τi,t)∑

k∈Ai,t
bk(τi,t)mk(τi,t)

, (29)

where ba(τi,t) and ma(τi,t) are ad a’s single bid and quality score at timestamp τi,t, which is the
timestamp for exposure t in session i. We can now use the fact that we observe timestamps for all
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impressions and resolve the issue of not observing quality scores. If bids and quality scores are only
functions of time, we can identify the propensity scores in a local neighborhood of any timestamp.
For example, consider the exposure t in session i at timestamp τi,t. If we use the data from other
impressions with the same Ai,t in the local neighborhood around τi,t, the propensity score for ad a
would be the proportion of times ad a has been shown in this set of impressions. More formally, the
LHS of Equation (29) will be identified by only having the information about actual ad assignments
in addition to Ai,t and τi,t from the RHS. Thus, the propensity scores are theoretically identified
given the observed covariates and our proof is complete.

It is worth noting that this is a theoretical identification proof. In reality, we may face some
practical challenges in estimating propensity scores. We discuss these practical challenges in
Appendix §C.3.

C.3 Propensity Score Estimation and Covariate Balance

Although propensity scores are theoretically identified given observables, there may still be some
practical challenges that we need to address in order to obtain accurate propensity estimates. Our
goal is to estimate the function e(Si,t, a) using data. From a practical standpoint, a few characteristics
of our setting help achieve this goal. One issue with the identification argument above is that it
assumes infinite data. However, if we do not have enough impressions with the same Ai,t in a local
neighborhood of τi,t, we may run into small sample problems. Two features of our setting help
address this practical challenge. First, advertisers can only target a few broad targeting categories,
so there are potentially many impressions with the same targeting characteristics at any point in
time. Second, even if the targeting categories were narrower, the scale and scope of our data are
large enough to satisfy the requirement of finding a large number of impressions with the same
targeting characteristics around the same time.

Another potential practical challenge is when advertisers’ bids and quality scores constantly
change over time. That is, even though each ad has a single bid and quality score at a specific
timestamp, these two values can vary every second. A useful characteristic of our setting is that
quality scores are only updated once a day. Further, for all top 15 ads in our study in terms of share,
we do not observe a bid change in the period of our study. Thus, the product ba(τ)ma(τ) is the same
for all timestamps in an entire day. This makes the process of learning propensity scores easier for a
machine learning algorithm.

The outcome of the task of propensity score estimation is the actual ad assignment. This variable
is a categorical variable with multiple classes, where each class represents an ad. Consistent with
our empirical analysis, we only focus on the top 15 ads and estimate the propensity scores for these
ads in all impressions. We use the following set of covariates to estimate the propensity scores:
(1) timestamp, (2) targeting variables that contain province, hour of the day, smartphone brand,
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connectivity type, and mobile service provider (MSP), (3) exact GPS coordinates, and (4) filtering
outcome f(Si,t, a) for all ads. While (1) and (2) are necessary for this estimation task, we include
(3) and (4) to help the algorithm learn the propensity scores more efficiently.

We use a multi-class XGBoost with a multi-class logarithmic loss as the evaluation metric that
uses a softmax objective to estimate the propensity scores. We estimate the propensity scores for all
impressions. The details of our procedure is similar to that of (Rafieian and Yoganarasimhan, 2021).
Like that paper, we focus on covariate balance to show evidence for the existence of imbalance in
the raw data and how we can assess balance by using our estimated propensity scores to weight
the impressions. To do so, we follow the norm in the literature to measure the standardized bias
with and without incorporating the inverse propensity weights (McCaffrey et al., 2013). For each
variable X , we define the unweighted mean of this variable when assigned to ad a as X̄unweighted

a ,
which is simply the average value of the variable X in the data when for impressions that show ad a.
We can formally define X̄unweighted

a as follows:

X̄a =

∑N
i

∑Ti
t=1 1(Ai,t = a)Xi,t∑N

i

∑Ti
t=1 1(Ai,t = a)

, (30)

where N is the total number of impressions, and Ti is the length of the session for session i. If ads
have been randomized properly across impressions, we should not see any discernible difference
between of X̄unweighted

a and the average value of this variable X̄ . To quantify this difference, we
follow the norm in the literature and use the notion of standardized bias for variable X when
assigned to ad a as follows:

SB(X, X̄a) =
|X̄a − X̄|

σX
, (31)

which is the absolute mean difference between the unweighted mean of this variable when assigned
to ad a and the mean of this variable for the full population, divided by the standard deviation of
this variable for the population. The numerator is the general bias in the unweighted average of
X when assigned to ad a, and the denominator standardizes this bias. The higher the standardized
bias is, the greater the covariate imbalance in assignment to ads. In the literature, a threshold of 0.2

is often used to assess balance: if the standardized bias is greater than 0.2, we say that there is an
imbalance. Hence, we can define a balance function for variable X and averages when assigned to
different ads as follows:

Balance(X, {X̄a}a) = 1

(
max
a

|X̄a − X̄|
σX

< 0.2

)
, (32)

where Balance(X, {X̄a}a) = 1 if and only if the maximum standardized bias for variable X
when assigned to ad a from the set of all ads is lower than the threshold 0.2. As such, if
Balance(X, {X̄a}a) = 1, we can say there is balance for covariate X , and if Balance(X, {X̄a}a) =
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0, it means that there is at least one ad for which there is imbalance in X when assigned to that ad.
The existence of imbalance is generally a sign of selection in assignment to ads. One way to

check if this selection is only on observables is to estimate propensity scores based on observables
and then use the weight-adjusted averages for variables when assigned to each ad. This approach
allows us to check covariate balance after weight adjustment. The existence of balance is a necessary
condition if we have unconfoundedness or selection on observables in the data. We can define the
inverse probability weight-adjusted (IPW) average values of X when assigned to a as follows:

X̄ IPW
a =

∑N
i

∑Ti
t=1

1(Ai,t=a)

ê(Si,t,a)
Xi,t∑N

i

∑Ti
t=1

1(Ai,t=a)

ê(Si,t,a)

, (33)

where each impression is weighted by its inverse propensity score. Now, we can follow the defini-
tions of standardized bias function to measure SB(X, X̄ IPW

a ), and then assess balance after weight ad-
justments by measuring Balance(X, {X̄ IPW

a }a). Ideally, we want to have Balance(X, {X̄ IPW
a }a) = 1

for all pre-treatment variables X in our data.
We now empirically examine covariate balance with and without IPW adjustments. We consider

all the features defined in Appendix §B that are not ad specific. This excludes the ad fixed effects
and features that start with This. Since we only focus on the top 15 ads, this gives us a total of 69
demographic features, 76 historical features, and 51 session-level features. Of all these 196 features,
33 covariates exhibit imbalance. However, after adjusting for inverse propensity weights, we have
balance for all 196 covariates. This finding provides evidence for unconfoundedness in our data.

D Details of BIQFA
In this section, we present important details of our BIQFA algorithm to supplement the content
presented in the main text of the paper.

D.1 Validation Procedure for Determining the Size of State Sample

As discussed in §4.2.3, an important step of our BIQFA algorithm is to determine the sampling of
S̃t. We argued that a reasonable choice is to sample from the states generated under the adaptive
myopic policy. However, it is not clear how to set the exact size of the state sample. In this section,
we propose a validation procedure that helps us fine-tune the size of our state sample, i.e., |S̃t|.

Ideally, we want to set |S̃t| such that our approximation yields good performance. Hence, we
need to first define what a good approximation performance is. Suppose that our BIQFA algorithm
approximates the set of q̂1, · · · , q̂T , based on the click and leave estimates ŷ∗ and l̂∗. Based on the
set of q̂1, · · · , q̂T , we can define an optimal policy π∗. Now, there are two ways to evaluate this
policy:

1. Evaluation based on the function approximation, which is equal to maxa q̂1(Si,1), for any
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initial state Si,1. This is what the function approximates, given the click and leave estimates.

2. Evaluation based on the click and leave estimates ŷ∗ and l̂∗. This approach draws the full
policy tree, from t = 1 to t = T , and calculates the probability of each trajectory and the
associated rewards based on ŷ∗ and l̂∗. We denote the resulting evaluation by V̂exact(Si,1).

The second approach serves as the ground truth for our approximation. That is, when running
BIQFA, we give the click and leave estimation functions as inputs, and we ideally want our
approximation to evaluate a policy as in the second approach. Hence, we can examine how well our
BIQFA algorithm approximates the performance of its proposed policy by examining how close
the two approaches above evaluate the policy for each initial state. As such, we can define the
approximation error as follows:

err =
∑
i

(
V̂exact(Si,1)−max

a
q̂1(Si,1)

)2
(34)

Now, we use this notion of approximation error to propose our validation procedure for setting |S̃t|,
which is described as follows:

• Step 1: For any data Ds, make a training-validation split into Dtrain
s and Dvalidation

s , such that
Dtrain
s ∩ Dvalidation

s = ∅.

• Step 2: Use the training data to estimate ŷ∗ and l̂∗.

• Step 3: Initialize a grid for different sizes of |S̃t|. We denote this grid by Bs.

• Step 4: For each k ∈ Bs, apply the BIQFA using to find the optimal dynamic policy using the
training data, and measure the total error on the validation data using Equation (34). Denote the
corresponding error for size k as err(k).

• Step 5: Pick k such that any k′ > k does not yield a substantially lower error.

We need to use Step 5 because a larger sample size does not perform worse than a smaller one.
However, our goal is to find where there is no meaningful gain in increasing the sample size. In
our empirical application, we used the model and evaluation data split for our validation procedure,
as described in §4.4. We also used the adaptive myopic policy to simulate the superset of states
from which we sampled. For a grid of {104, 2× 104, · · · , 9× 104}, we found k = 50, 000 to be the
optimal k through validation.

D.2 Empirical Performance of BIQFA

As discussed in §4.2.3, an important limitation of function approximation is whether it theoretically
yields good performance. This is why we evaluate the approximation performance of our selected
BIQFA algorithm empirically, using the procedure proposed in the previous section and Equation
(34). We use the test data for this evaluation to make sure that there is no transfer of information.
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We find that the R-squared of our approximation is 0.9720, which means that our BIQFA algorithm
does an excellent job of approximating the value functions using the inputs.

E Counterfactual Policy Evaluation
In this section, we present the details of our policy evaluation framework and supplement the content
presented in the main text of the paper.

E.1 Direct Policy Evaluation Algorithm

We start by describing how we evaluate a policy given the initial state and our estimates of the
primitives. As discussed in the §4.3, there are different algorithms that we can use to perform this
task. The simplest and most common solution is often to use large-scale simulations using the
policy and primitive estimates to measure the performance of the session. Another approach is to
derive the expected number of clicks for each session analytically. We presented the expectation we
need to take in Equation (18). However, that expectation is over all trajectories. We use the fact that
only a few of these trajectories can happen under a deterministic policy π. More precisely, it is only
the past sequence of clicks by the user that creates variation in trajectories that can happen. In the
first exposure, there is only one ad that can be shown under the deterministic policy π. Next, in the
second exposure, there are two possibilities that we need to consider: whether the previous exposure
resulted in a click or not. Similarly, in the third exposure, the total number of possibilities would be
22 = 4, and more generally, in any exposure t, the number of possibilities is 2t−1. As such, we can
only take the expectation over these viable trajectories and avoid considering all trajectories. Below,
we present a generic direct policy evaluation algorithm that takes a policy π and a set of primitive
estimates ŷ and l̂, and returns the expected reward for any session with initial state variables Si,1 for
any specific length of horizon T .

The key idea behind Algorithm 2 is to consider all the states s∗t that may occur under policy π
and their corresponding probabilities wt. Since we can estimate the reward for each state s∗t and
optimal action a∗t using our click estimation model ŷ, the value generated under the policy is the
probability of being at that state times the probability of click on the impression with that state and
the action selected by the policy. As shown in Algorithm 2, we start with the initial state s∗1, which is
the same as Si,1 which happens with probability 1. For the second exposure, we take the following
steps: (1) we first find the ad a∗1 to be shown under the policy π at state s∗1 such that π(a∗1 | s∗1) = 1,
(2) we then estimate the expected reward for the ad selected for state s∗1, using our click estimation
model ŷ, which gives us r̂∗1, (3) we then find the dot product of these expected rewards and the
probability of being at each state to identify the total contribution to the expected reward per session,
i.e., v̂∗1 , (4) we then update the next session by considering the only two possibilities of click or no
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click on the ad shown, and update the next state s∗2 and (5) finally, we use our transition estimates to
find the probability of being in the next state w2, using a recursive relationship based on the click
and leave probabilities, and the probability of prior states. We repeat this process for all exposure
numbers from 1 to T and then sum the contribution at each step to the expected rewards per session
to find the total expected reward per session. It is worth noting that from the second exposure, the
s∗t becomes a full vector, and all the operations inside the for loop are implemented on a vector,
thereby returning vector values for a∗t , r̂

∗
t , for v̂∗t .

Algorithm 2 Direct Policy Evaluation Algorithm

Input: π, Si,1, T, ŷ, l̂
Output: ρ̂(π;Si,1, T, ŷ, l̂)

1: s∗1 ← Si,1
2: w1 ← 1 . wt is the probability of being at state s∗t .
3: for t = 1→ T do
4: a∗t ← argmaxa π(a | s∗t ) . A vector of ads selected by policy π at state(s) s∗t
5: r̂∗t ← ŷE(s∗t , a

∗
t )

6: v̂∗t ← wt · r̂∗t . Dot product of wt and r̂∗t .

7: s∗t+1 ←
(
〈s∗t , y∗t = 0〉
〈s∗t , y∗t = 1〉

)
. y∗t is the actual click outcome.

8: wt+1 ←
(
〈wt � (1− l̂(s∗t , a∗t ))� (1− ŷ(s∗t , a

∗
t ))〉

〈wt � (1− l̂(s∗t , a∗t ))� ŷ(s∗t , a
∗
t )〉

)
. � is the element-wise product.

9: end for
10: ρ̂(π;Si,1, T, ŷ, l̂)←

∑T
t=1 v̂

∗
t

The fact that we do not consider impossible trajectories makes Algorithm 2 fast and scalable.
We can easily use this algorithm to evaluate the policy for all the sessions in our test data. It is
worth noting that Algorithm 2 does not necessarily satisfy the honesty criteria defined in §4.3.
However, we can ensure honesty by setting the right inputs for this function. We need to make
sure that the policy is developed using the modeling data DModel, whereas the primitive estimates
used for evaluation are trained on the evaluation data DEvaluation. For example, πM is the policy
generated only using the modeling data DModel, while ŷE and l̂E are primitive estimation models
that are trained on the evaluation data DEvaluation. As such, policy evaluation through the function
ρ̂(πM ;Si,1, T, ŷ

E, l̂E) ensures honesty, because the data used for policy identification do not overlap
with the one used for policy evaluation.

E.2 Details of Model, Evaluation, and Test Data

An important part of our honest direct method is splitting the data into three parts that are used
for modeling (DModel), evaluation (DEvaluation), and testing (DTest). We now share the details of this
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splitting. From our set of 84,306 unique users, we randomly select two separate samples of 35,000
users for the modeling and evaluation data sets. The remaining 14,306 users make the test data
DTest.

Table A1 summarizes some key metrics for these three data sets: number of impressions and
sessions in the full data and in the focal messenger app.

DModel DEvaluation DTest

Number of Impressions 3,251,996 3,259,750 1,359,858
Number of Impressions in the Focal App 2,612,647 2,651,038 1,093,705
Number of Sessions 558,222 560,515 231,322
Number of Sessions in the Focal App 486,586 489,370 201,466

Table A1: Summary statistics of the user-level variables.

F Learning Algorithm and Parameter Tuning
We now discuss the details of our learning algorithm and how we tune hyper-parameters of the
XGBoost model. In general, hyper-parameters need to be set by the researcher because these
parameters cannot be inferred from the data like other model parameters. For the XGBoost model,
these hyper-parameters include the maximum depth of each tree (max depth), learning rate (eta),
etc. In total, we have two sets of models {ŷM , l̂M} and {ŷE, l̂E} to be estimated on two separate
sets of data DModel and DEvaluation.

We present a generic approach to hyper-parameter tuning in XGBoost. Suppose that you want
to learn an XGBoost model ĥ using data D∗. We use a validation procedure whereby we split the
data into two parts and use one for training the model and one for validation. We split at the user
level. That is, from K users available in our data, we randomly select 0.8K for our training and the
other 0.2K for validation. This is consistent with our original data splitting presented in Appendix
§E.2, and ensures that we do not use impressions for the same user to validate our model selection.
Let D∗train and D∗validation respectively denote the resulting training and validation data sets for data
D∗. For any set of specific hyper-parameters, we estimate the model on D∗train and then evaluate its
performance on D∗validation. In the end, we choose the set of hyper-parameters that give us the best
performance in the validation set.

We present the full set of hyper-parameters in Table A2. These are the parameters we want to
tune for our XGBoost model. Since we use the R package “xgboost”, we use the same name for
the hyper-parameters. For some of these parameters, we can set a prior. For example, we set the
learning rate eta = 0.1, which is commonly used for learning algorithms. Likewise, we use 0.5 for
both row and column sub-sampling factors because the optimal choice of these parameters does
not significantly improve the model performance. As shown in Table A2, for each parameter, we
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consider a few values. Any combination of values for our hyper-parameters constitutes one full
set of hyper-parameters. Since we have 8 values of max depth (maximum depth of each tree), 4
values of gamma (the minimum loss reduction required to make a split), 4 values of alpha (`1-norm
regularization parameter to leaf weights), and 2 values of early stop round (stopping rule that stops
the iterations after we do not see improvement in the performance for a number of iterations), it
gives us a total of 256 different sets of hyper-parameters to evaluate. We use early stop round

instead of the setting nround to avoid overfitting. We choose the set that has the lowest log loss on
the validation set.

Set of Values
max depth {3,4,5,6,7,8,9,10}
gamma {5,7,9,11}
alpha {3,5,7,9 }
early stop round {1,2}

Table A2: Hyper-parameters of an XGBoost model and values considered.

We use this validation procedure four times separately to learn our four models {ŷM , l̂M , ŷE, l̂E}.

G Robustness to the Cold-Start Problem
Our adaptive ad sequencing framework requires the set of ads in the inventory to be fixed. That
is, we have a set of ads A from which we can choose which ad to serve at any exposure. One
implication of this setup is that we can only find estimated rewards and transitions, and Q-values for
ads in the inventory. As such, if a new ad arrives, it is not clear how our framework classifies this ad.
The problem of dealing with new actions for which we have no data is called the cold-start problem.

In this section, we discuss solutions to this problem within our framework. We first formally
define the problem. For ad a /∈ A, how can we obtain the Q-values needed to choose whether or not
to show this ad in state s? In other words, we need to obtain q̂t(s, a). From our BIQFA algorithm,
we know that this task requires click and leave estimates for this ad. However, the issue with this
new ad is that we have no instance in which this ad is shown to an impression in our data. Thus, we
need to find a solution that addresses this challenge.

To this end, we propose two different types of solutions: (1) implementation-based solution,
and (2) learning-based solution. We discuss these solutions in the following sections.

G.1 Implementation-based Solution

We start with the implementation-based solution. This solution is based on two components: minor
randomization and continuous retraining of the models. That is, the policy incorporates some level
of randomization so the new ad a can be shown in some exposures, and then use the logs for this
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new ad to retrain the model so it can accurately predict the Q-values for the new ad. It is worth
noting that both practices of inducing minor randomization and continuous training of the models
are very common in digital platforms that face rapidly changing environments.

For implementing minor randomization, many platforms implement ε-greedy policies that
choose the optimal action by 1− ε probability and other k actions with an ε/k probability, thereby
ensuring a non-zero probability for all actions (Theocharous et al., 2015). In our adaptive ad
sequencing framework, this means that the platform implements the optimal dynamic policy with
probability 1 − ε, and randomizes other actions with ε probability. A viable alternative to this
approach is to randomize allocation for a tiny portion of users. This approach is employed by Bing
search ads, where they need to rely on randomization to obtain accurate estimates of quality scores
(Ling et al., 2017). In our context, this means that we hold out a small fraction of our users and
implement a random policy on them. We can then use their data to retrain our main models.

For implementing continuous retraining of the model, platforms can choose from a variety of
different approaches. The choice of how frequently to retrain the model depends on the problem
at hand. Given the scalability of our framework, the platform can easily retrain models in a batch
manner every few minutes and update models. For more details on the algorithms for model
retraining, please see Wu et al. (2020).

Overall, a combination of minor randomization and continuous retraining can easily fix the
cold-start problem. It is worth noting that this approach is not the optimal approach to address the
cold-start problem per se, but it certainly helps avoid the problem to a great extent. For optimal
solutions, future research can look into more online approaches that actively decide between
exploration and exploitation in a regret-minimizing manner.

G.2 Learning-based Solution

We now discuss a learning-based solution, which does not need continuous randomization and can
be performed offline. The only requirement is a few changes to the features used for learning the
main functions. The problem statement is the same as before. We have an ad a /∈ A, for which
we have no instance in the training data. We want to see under what assumptions it is possible
to accurately estimate the outcomes for this ad. In general, for any ads, our XGBoost modeling
framework uses two separate sources of variation in ad-specific features:

• User-level ad-specific features: These are features regarding the long- and short-term fre-
quency, spacing, and clicks of an ad. These features are ThisHistFreqAdi, ThisHistSpaceAdi,
ThisHistClickAdi, ThisSessFreqAdi, ThisSessSpaceAdi, are ThisSessClickAdi, which are based
on the inventory matrices.

• Ad-specific features: This is the dummy variable corresponding to each ad.
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In combination, the ad dummy captures the baseline performance of an ad, and the user-level
ad-specific features capture the context-dependent ad performance. When we consider a new ad, we
do not have any information from that ad per se, but we want to see if we can use the information
about other ads in a similar situation to estimate the performance of this new ad. For this purpose,
the variation in user-level ad-specific features in our training data is very useful. These features
are all zero for the new ad, so the model can use other instances in the training data where these
features are zero to infer about this new ad. Intuitively, the model can even use the data from a very
established ad when it is first shown to a user. In such cases, all the user-level ad-specific features
are zero, like the new ad.

The challenging part for the new ad is the purely ad-specific feature in our feature set: ad dummy.
If an ad has not been shown in the training data, there is no variation in the ad dummy for this
ad because it was zero for all impressions in the training data. The solution for this problem is to
replace ad dummies with the average performance of these ads in terms of the outcome. That is,
for the click prediction model, we replace the ad dummy with the average CTR of the ad so far.
Johannemann et al. (2019) show that replacing the dummy variables for average outcome for the
category yields the same performance for the model. Rafieian and Yoganarasimhan (2021) use
the average CTR of the ad as well as the number of impressions and clicks to capture the same of
all ads with these variables. In our data, we verify this point by replacing the ad dummies with
three performance metrics of the ad shown: number of impressions, number of clicks, and average
CTR up until the impression. We show that the predictive model with these features has the same
predictive accuracy as the one with ad dummies.

In summary, this approach uses two separate sources of variation in the training data to estimate
the outcomes for new ads. The first source is the variation in the beginning of users’ experience with
other ads, which is captured by the user-level ad-specific features. These are all instances where the
user-level ad-specific features are zero. The second source is other new ads in the training data. The
three ad-specific features – the number of impressions, clicks, and average CTR – for the ads that
are new in the training data are the same as these features for new ads in the test data. Therefore,
the predictive model can exploit these similarities between ads to infer the outcomes for a new ad
in the test set. Of course, this approach works well only under the assumption that ads are fairly
similar, so we can estimate the performance of a new ad from the historical data of other ads in
similar situations. If we want to relax this assumption, a combination of the implementation-based
and learning-based solutions can be useful.
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H Benchmark Policies and Time Complexity
H.1 Definition of Benchmark Policies

In this section, we aim to further formalize the benchmark policies defined in §5.2. We discuss these
policies below and formally characterize them:

• Adaptive Myopic Policy: This sequencing policy does not take into account the expected future
rewards when making the decision at any point. This is equivalent to our adaptive ad sequencing
policy with β = 0 that turns off the weight on the future rewards. Thus, we can write the
objective function for adaptive myopic sequencing as follows:

amyopic
i,t = arg max

a∈Ai,t

ŷM(Si,t, a) (35)

Now, we can define this policy as πMm as follows:

π̂Mm (a | Si,t) =

1 a = amyopic
i,t

0 a 6= amyopic
i,t

(36)

In this policy, the publisher selects the ad that maximizes CTR in the current period. It is
worth noting that this policy is adaptive, as it uses session-level information that is time-varying.
However, it is myopic in the sense that it ignores future information. This case reflects the
common practice of using contextual bandits in the industry.

• Single-Ad Policy: This policy only uses the pre-session information. Since it does not use
adaptive information, this policy allocates all the impressions to a single ad that has the highest
average CTR. This is similar to the practice of using a fixed or non-refreshable ad slot where
the whole session is allocated to one ad. The objective in this case is the same as Equation (37)
only for t = 1. We can formally write this policy as follows:

asingle-ad
i,t = arg max

a∈Ai,1

ŷM(Si,1, a) (37)

We can now define this policy as πMs as follows:

π̂Ms (a | Si,t) =

1 a = asingle-ad
i,t

0 a 6= asingle-ad
i,t

(38)

This policy provides some insight into the ad sequencing problem because it has two distinct
features. First, it captures the potential gains from using a short-lived ad slot as compared to the
fixed ad slot. Second, it demonstrates the value of adaptive session-level information. One could
argue that the optimal single-ad that is selected for the entire session may be different from the
optimal ad for the first exposure. We acknowledge this issue and check the robustness of our
results by using a dynamic optimization constrained by a single ad to be shown for the entire
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session. In the main text, however, we use the more straightforward approach of allocating the
entire session to the ad with the highest CTR in the first exposure.

• Random Policy: In this sequencing policy, the publisher randomly selects ads from the ad
inventory. We call this policy πr and define it as follows:

π̂r(a | Si,t) =

 1
|Ai| a ∈ Ai,t
0 a 6∈ Ai,t

, (39)

where the probability of being shown is uniformly distributed across all the ads participating
in the exposure. We drop the superscript M from this policy because this superscript denotes
the use of a model that is trained on the modeling data DModel. While this is a naive policy,
it can serve as a benchmark showing how well we can do without any model. Moreover, the
reinforcement learning literature uses this policy as a conventional benchmark.

H.2 Time Complexity of Each Policy

We now discuss the time complexity of each policy. We focus our discussion on the time complexity
of obtaining each policy from an algorithmic point-of-view. Let N , T , and |A| denote the number
of sessions, the length of horizon, and the size of ad inventory (i.e., number of actions). We denote
the dimensionality of the covariates by Pj for policy j, and allow it to vary with the policy if needed.
Finally, following section §D.1, we use k to denote the sample size of the state space for each t,
such that |S̃t| = k.

Our goal in this section is to examine the time complexity of the policies defined in a relative
sense. As such, we define two computational costs. First, the computational cost of estimating
XGBoost on a data matrix of size n× d with no missing entry is of the order O (cdn log(n)), where
c is the maximum depth times the number of trees (Chen and Guestrin, 2016). Second, it is easy to
verify that the time complexity of predicting the labels for a data matrix of size n× d is O(cn), with
the same definition of c. Since c is constant, we ignore it in our analysis. With these preliminaries,
we define the time complexity of identifying the policy in each of the four scenarios:

• Random Policy: Since this policy is a random generator, the time complexity is O(1).

• Single-Ad Policy: This policy uses the first observation in each session to select the ad. As such,
it needs to only estimate the XGBoost model for the first time period. Once we have a predictive
model for the first time period, we have the policy function. Therefore, the time complexity
of identifying the single-ad policy is equal to the time complexity of estimating a data matrix
of N × Ps, which is O(PsN log(N)). We know that the number of features used is a linear
function of |A| that we define as Ps = p|A| + q. So we can write the time complexity of the
single-ad policy as O((p|A|+ q)N log(N)).
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• Adaptive Myopic Policy: This policy uses all the observations within a session from exposure 1
to T . Therefore the number of observations in the data matrix has an upper bound of NT . The
data matrix that is used to learn the XGBoost model is NT × Pm. Since the features used for
both the single-ad and adaptive myopic policies are the same, we have Pm = Ps. Given the
time complexity of XGBoost, we find that the time complexity of the of identifying the adaptive
myopic policy is O((p|A| + q)NT log(NT )). Dividing the time complexity of the adaptive
myopic policy by that the single-ad policy, we find that the time complexity of the adaptive
myopic policy is T (1 + log(T )/ log(N)) times higher than that of the single-ad policy. This
intuitively means that the time complexity is of the order of T times higher for the adaptive
myopic policy compared to the single-ad policy.

• Fully Dynamic Policy: Our proposed adaptive ad sequencing policy needs to obtain all the
elements of the adaptive myopic policy, so it is clear that it has a greater computational cost.
The first step for identifying the fully dynamic policy is to estimate click and leave outcomes
on the entire data. Each of these two tasks has the time complexity calculated for the adaptive
myopic policy, which is O((p|A| + q)NT log(NT )). The next step of the algorithm is to set
the click estimates as the Q function for time period T and perform backward induction for
t from 1 to T − 1. At each time period t, we evaluate k sampled states for |A| different ads,
we gives us k|A| as the number of rows in our data matrix. The dimensionality of the state
space is the number of features used for the adaptive myopic policy (p|A|+ q), in addition to
the click and leave estimates. The process of obtaining click and leave estimates has the time
complexity of O(2k|A|). We then need to calculate Bellman backups, which requires finding
the maximum of the Q function in the next state. There are two possible probabilistic scenarios
for the next state, which is determined by the probability of click in the current period. Each
scenario is for the next state of k|A| observations, repeated for each ad to find the maximum,
which gives us k|A|2 observations, and therefore O(k|A|2). Since we need to perform it twice
for both scenarios, it adds to the time complexity by O(2k|A|2). There are some additions and
multiplications of vectors of size k|A| to calculate the Bellman backups, which adds to the time
complexity by O(6k|A|). Once we have the Bellman backups, we need to run the XGBoost
with the Bellman backups as the outcome and features of the dimension (p|A|+ q + 2), which
has the time complexity of O((p|A| + q + 2)k|A| log(k|A|)). Hence, finding the Q function
for each time period has the time complexity of O(k|A|2 log(k|A|). Repeating this process for
all T − 1 periods gives us the time complexity O((T − 1)k|A|2 log(k|A|). Thus, the total time
complexity is O((p|A|+ q)NT log(NT ) + (T − 1)k|A|2 log(k|A|)). Depending on the size of
k, we can further simplify this time complexity. If we assume that the order of k is a fraction
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of N (in our empirical application, we have k ≈ N/4), we find that the time complexity of
O(NT |A|2 log(N |A|)). Therefore, dividing the time complexity of the fully dynamic policy by
that of the adaptive myopic policy reveals that approximately the time complexity of the fully
dynamic policy is |A| times higher than the adaptive myopic policy, if N is considerably larger
than T and |A|.

I Robustness Checks
We present a series of robustness checks to validate our main results.

I.1 Robustness to the Number of Ads

In our main analysis, we focused on the top 15 ads with the highest frequency in our data that
collectively account for over 70% of the total number of impressions. It is worth noting that
managers can readily use our framework with the entire set of ads as the complexity of our BIQFA
algorithm only increases polynomially in the number of actions (ads). The reason we focused on the
top 15 ads is to ensure the reliability of our policy evaluation because we would have more accurate
estimates of these ads to reliably perform our policy evaluation.

In this section, we focus on the top 10 ads to show that our main results are not driven by the
specific set of 15 ads used in the main analysis. We estimate all the outcomes in Table 5 with the
top 10 ads and present the results in Table A3. As presented in this table, the performance of all
non-random policies remains qualitatively and quantitatively the same. The only difference comes
from the random policy because of the change in the set of ads. Overall, with the top 10 ads, the
random sequencing policy performs better likely because the other 5 ads had lower expected CTR.
As expected, the market concentration increases since we now randomize over the set of 10 ads as
opposed to 15 ads, thereby decreasing diversity.

In summary, the results in Table A3 demonstrates that the gains from our dynamic framework
remain unchanged when we use a different number of ads in the ad inventory.

I.2 Robustness to the Length of Horizon

In our main analysis, we focused on T = 10 as the length of the horizon. Again, it is worth
emphasizing that this choice is not because of computational limitations, and the BIQFA algorithm
is scalable when we use large T values. However, we made this choice because most sessions end
in 10 exposures. In this section, we check the robustness of our results by using different lengths
of the horizon, such as T = 6 and T = 8. Our goal here is to establish that the specific choice of
T = 10 did not drive our main results and different choices of T reveal the same pattern.

We present the results of this practice in Table A4 and Table A5. The results are qualitatively
consistent with the main results of the paper in Table 5 and draw an interesting parallel with Figure
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Metric
Sequencing Policies

Fully Dynamic Adaptive Myopic Single-Ad Random

Expected No. of Clicks Per Session 0.1662 0.1574 0.1306 0.1085
– (% Click Increase over Random) 53.24% 45.07% 20.36% 0.00%

Expected CTR (per Impression) 4.23% 4.02% 3.41% 2.79%
Expected Session Length 3.9255 3.9158 3.8237 3.8844
Ad Concentration (HHI) 0.2967 0.3191 0.3416 0.1522

No. of Users 14,084 14,084 14,084 14,084
No. of Sessions 201,466 201,466 201,466 201,466

Table A3: Performance of different sequencing policies in the test data when we only focus on top
10 ads in the ad inventory.

Metric
Sequencing Policies

Fully Dynamic Adaptive Myopic Single-Ad Random

Expected No. of Clicks Per Session 0.1385 0.1323 0.1149 0.0795
– (% Click Increase over Random) 74.19% 66.42% 44.50% 0.00%

Expected CTR (per Impression) 4.33% 4.03% 3.41% 2.42%
Expected Session Length 3.1992 3.1995 3.1722 3.1463
Ad Concentration (HHI) 0.3158 0.3408 0.3537 0.1159

No. of Users 14,084 14,084 14,084 14,084
No. of Sessions 201,466 201,466 201,466 201,466

Table A4: Performance of different sequencing policies in the test data when we use T = 6 as the
length of horizon.

9. The gains from both fully dynamic and adaptive myopic policies increase as we increase the
length of the horizon. This is because both these policies update the information within the session,
thereby making better decisions.

More interestingly, we find that the gain from the fully dynamic policy over the adaptive myopic

policy is 4.69%, 5.49%, and 5.76% when T is equal to 6, 8, and 10 respectively. This relative gain
reflects the use of a forward-looking objective that can better exploit a longer horizon.

I.3 Robustness to Switching Model and Evaluation Data

In our main analysis, we distinguished between two different data sets: DModel and DEvaluation. The
former data set was used to develop the model and identify the policy (policy identification), whereas
the latter data set was used to evaluate the policy on a separate test data (policy evaluation). We
switch the two to ensure that our results are not driven by the specifics of these two data sets,
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Metric
Sequencing Policies

Fully Dynamic Adaptive Myopic Single-Ad Random

Expected No. of Clicks Per Session 0.1555 0.1474 0.1246 0.0875
– (% Click Increase over Random) 77.86% 68.59% 42.43% 0.00%

Expected CTR (per Impression) 4.29% 4.03% 3.41% 2.42%
Expected Session Length 3.6185 3.6107 3.5531 3.5493
Ad Concentration (HHI) 0.3002 0.3252 0.3506 0.1159

No. of Users 14,084 14,084 14,084 14,084
No. of Sessions 201,466 201,466 201,466 201,466

Table A5: Performance of different sequencing policies in the test data when we use T = 8 as the
length of horizon.

Metric
Sequencing Policies

Fully Dynamic Adaptive Myopic Single-Ad Random

Expected No. of Clicks Per Session 0.1637 0.1560 0.1285 0.0932
– (% Click Increase over Random) 75.60% 67.29% 37.82% 0.00%

Expected CTR (per Impression) 4.17% 3.99% 3.36% 2.42%
Expected Session Length 3.9247 3.9045 3.8257 3.8523
Ad Concentration (HHI) 0.2869 0.3265 0.3132 0.1158

No. of Users 14,084 14,084 14,084 14,084
No. of Sessions 201,466 201,466 201,466 201,466

Table A6: Performance of different sequencing policies in the test data when we use DEvaluation for
policy identification and DModel for policy evaluation.

such as their distributions. That is, we use DEvaluation for policy identification and DModel for policy
evaluation. This means that BIQFA will be performed on DEvaluation, using the estimates of click and
leave outcomes that are obtained on the same data. This practice aims to test whether a completely
different data set for modeling and evaluation generates meaningfully different results.

We present the results of this practice in Table A6. As shown in this table, the performance of
all four policies remains qualitatively unchanged, providing support against the hypothesis that the
main results are driven by the specifics of the data distribution.

I.4 Robustness to Other Benchmarks

While we focused on three benchmark policies in our main analysis, there are potentially many
policies that platforms can employ. In this section, we consider two alternative approaches: the first
one is directly taken from the solution in Sun et al. (2017), and the second one is a case where the
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sequence of ads is pre-defined in the sense that there is no need for adaptive adjustment. We first
describe these two alternative policies and our approach to identifying these policies empirically,
and then show the performance of these policies when evaluated on the test data.

• SJDM: The first policy we consider is the one presented in Sun et al. (2017). For brevity, we
use the abbreviation SDJM to refer to the approach in this paper henceforth. This paper focuses
on the same context of short-lived refreshable mobile in-app ads and provides a closed-form
solution for the optimal sequencing policy. However, similar to other solutions proposed to this
problem in the literature, this paper makes simplifying assumptions for theoretical tractability
and only allows for two different dynamic ad effects: (1) sojourn effect, which is the effect of
the passage of time within the session, and (2) exposure effect, which is the number of times an
ad has been shown within the session. In our study, the former is captured by t and the latter
is captured by SessFreqAd(a)

i,t for each ad a. SDJM focuses on different cases where only one
of the two effects is present, as well as the case where both sojourn and exposure effects are
present. For our benchmarking, we focus on the most advanced version of the proposed policy
in SDJM, which considers the case with both sojourn and exposure effects and a slot-specific
leave probability. This policy is presented in section 7.1 of SDJM. Here we briefly describe the
nomenclature in this paper and then present the policy and how we use our data to identify it.

SDJM characterize the probability of click on ad a in exposure number t in a session where ad
a has been shown k − 1 times already within the session as pa(k, t) and define it as follows:

pa(k, t) = δaβ
t−1γk−1, (40)

where δa is the probability of click on ad a in the first exposure of the session, β is the decay
rate for the exposure number (sojourn effect), γ is the decay rate for the exposure effect. Both
β and γ are assumed to be lower than one, which means the probability of click on any ad a
shrinks as more exposures are shown within the session (sojourn effect), and/or more exposures
of this specific ad are shown within the session (exposure effect). Given this formulation of
click probability, SDJM proposes the following optimal sequencing policy:

at = argmax
a

αaδaγ
ka(t)

(1− βλ̄t) + βλ̄tδaγka(t)
, (41)

where at is the ad selected in exposure t, αa is the revenue from ad a, δa is the probability
of click on ad a, γ is the decay rate for the exposure effect and ka(t) is the number of prior
exposures of ad a within the session, β is the decay rate for the exposure number, and λ̄t is the
continuation probability at exposure number t.

In our study, since our goal is to maximize user engagement, each click has the same value,
therefore αa is the same across all ads and we can normalize it to one, i.e., αa. While SDJM
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only presents an aggregate δa for each ad a and does not discuss personalization, the derivation
of a personalized policy is through defining δi,a as the probability of click on ad a in the first
exposure of session i. In session i, the value of ka(t) is the same as SessFreqAd(a)

i,t at exposure t
in our study. γ is a parameter that is not known and needs to be set, either a priori or through
estimation. Likewise, β and λt are the unknown parameters of the study that needs to be set a
priori or in a data-driven manner. We now describe how we estimate these unknown parameters
from the data:

1. Step 1: Use DModel to estimate ˆ̄λt for t = 1, 2, . . . , 9, and set ˆ̄λ10 = 0, since the length of
horizon is 10.

2. Step 2: Use DModel to estimate the δi,a for each ad a in session i. The approach is very
similar to the click prediction model in the paper. The main difference is that session-level
features are not available when we only estimate click probabilities on the first exposures.
Like our study, we use XGBoost to estimate the click probabilities. This step gives us δ̂i,a.

3. Step 3: Given estimates δ̂i,a, form a likelihood function for the click probabilities, using all
exposures inDModel. The goal is to estimate β and γ using a maximum likelihood estimator
(MLE). This gives us β̂ and γ̂ that maximize the likelihood of observing data given δ̂i,a.
Our estimates are β̂ = 0.8545 and γ̂ = 0.9532.

4. Step 4: With the estimates from Steps 1–3, find the optimal ad for exposure t in session i
as follows:

aSDJM
i,t = arg max

a∈Ai,1

δ̂i,aγ
ka(t)

(1− β̂ ˆ̄λt) + β̂ ˆ̄λtδ̂i,aγka(t)
, (42)

5. Step 5: Use Honest Direct Method presented in §4.3 to evaluate SDJM policy.

• Pre-defined Sequencing: Our fully dynamic policy develops a real-time dynamic policy, which
is not pre-defined because the policy can change based on the user’s response within the session.
For example, the optimal decision on the second exposure may be different depending on
whether or not the user has clicked on the first ad or not. As such, we cannot ex ante define a
sequence because users’ click decision is probabilistic. The only way to develop a pre-defined
sequencing policy is to not incorporate the real-time click information in our decision-making.
While there is likely some information loss in dropping the within-session click data, our goal is
to quantify the extent of this loss. This calculation would be helpful, especially in cases where
platforms do not have a real-time computational infrastructure. However, it is worth noting
that the computational benefits from this approach are minimal. Thus, if the platform has the
infrastructure to update information in real-time, our fully dynamic policy is fast enough to
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generate real-time decisions.

To develop our pre-defined sequencing policy, we follow the same procedure as our main
analysis without using the following two features: SessClicki,t and SessClickAd(a)

i,t . If we solve
the dynamic programming problem without these two features, the resulting policy will be a
pre-defined sequencing policy that does not change within the session. This is because the
only probabilistic component of state transitions is the users’ decision to leave the session, in
which case, the sequence will be terminated. We now describe the procedure to identify this
pre-defined sequencing policy:

1. Step 1: Use DModel to estimate ŷ(s, a) and l̂(s, a) where SessClicki,t and SessClickAd(a)
i,t

are excluded from the full set of features g(s, a).

2. Step 2: Use BIQFA (Algorith 1) to approximate the Q function.

3. Step 3: Use Honest Direct Method presented in §4.3 to evaluate the pre-defined sequencing
policy.

We evaluate both SDJM and the pre-defined sequencing policy using our Honest Direct Method
and compare them with the fully dynamic policy proposed in this paper. Our results are presented in
Table A7. The results of this table reveal interesting patterns. First, we find that our fully dynamic

policy dominates both SDJM and the pre-defined sequencing policies in terms of our main metric,
which is the expected number of clicks per session. When we compare our fully dynamic policy with
SDJM, we notice a 28.24% better performance by our proposed policy. This is because our policy
takes a collective approach in incorporating all dynamic ad effects, whereas SDJM simplifies the
problem and only focuses on a few select dynamic ad effects: exposure and sojourn effects, as well
as the effect of ads on usage. Further, SDJM imposes restrictive functional form assumptions on
the way these effects can play a role, whereas our proposed method takes a more flexible machine
learning approach to consider a wider class. It is worth noting that the SDJM approach results in a
lower concentration metric, which is likely due to the fact that γ is lower than it should be, so it
does not show multiple exposures of one ad within the session. This is mainly because the model
only allows for the exposure effect and ignores other ad-specific effects such as spacing.

A few points are worth emphasizing about SDJM. First, there are other variants of this approach
that we can use. For example, we can focus on a non-personalized click probability estimate δa
instead of δi,a, which is the variant presented in Sun et al. (2017). When we use this approach, the
performance is significantly worse than the personalized approach. Second, another variant is to use
a single λ̄ for the full population. We find that this approach also does worse than the slot-specific
approach presented in Table A7. Finally, we note that the performance of SDJM is even slightly
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Metric
Sequencing Policies

Fully Dynamic SJDM Pre-defined Random

Expected No. of Clicks Per Session 0.1671 0.1303 0.1579 0.0930
– (% Click Increase over Random) 79.59% 40.14% 69.87% 0.00%

Expected CTR (per Impression) 4.26% 3.30% 4.02% 2.42%
Expected Session Length 3.9258 3.9494 3.9295 3.8518
Ad Concentration (HHI) 0.2902 0.1768 0.2560 0.1159

No. of Users 14,084 14,084 14,084 14,084
No. of Sessions 201,466 201,466 201,466 201,466

Table A7: Performance of fully dynamic policy compared to alternative benchmarks: SJDM Sun
et al. (2017) and pre-defined sequencing policies.

worse than the single-ad policy that only shows one ad for the entire time. This means that the
sequencing approach in SDJM is largely ineffective in our context since it does not outperform a
single-ad policy without any sequencing.

Next, we focus on the comparison between the fully dynamic policy and the pre-defined
sequencing policy. We find that our proposed policy outperforms the pre-defined sequencing policy
by 5.83%. Interestingly, the performance of the pre-defined sequencing policy is slightly worse
than the adaptive myopic policy, which illustrates the value of real-time updating: the adaptive
myopic policy exploits the real-time updating, which helps it perform almost the same as a dynamic
policy without taking real-time updating into account. However, it is still worth noting that the
performance of this pre-defined approach is still promising if the platform does not have real-time
updating capabilities. Together, our results establish considerable gains from real-time updating,
which highlights the strength of the framework presented in the paper that is scalable in the presence
of real-time updating.

I.5 Robustness of the Results in §5.3.1 to Alternative Specifications

In §5.3.1, we first showed a U-shaped pattern between the number of prior sessions a user has
participated in and the gains from sequencing. We demonstrated this relationship using five quintiles
of the number of prior sessions. We further use a regression model to examine the correlates of
gains across historical features. In particular, we account for the number of past impressions and the
variety of ads seen as the drivers of the U-shaped pattern. In this section, we present more results to
demonstrate the robustness of our main results in §5.3.1 to alternative specifications. We first run a
series of regressions where gains from the fully dynamic over adaptive myopic policy is the outcome
variable, and we account for the number of prior sessions and its squared term to account for the
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Historical Features Dependent Variable: Gaini
(1) (2) (3) (4)

No. of Prior Sessions -0.000339∗∗∗ -0.000182∗∗∗ -0.000195∗∗∗ -0.000191∗∗∗

(-24.43) (-6.89) (-7.25) (-6.81)
(No. of Prior Sessions)2 0.000004∗∗∗ 0.000003∗∗∗ 0.000002∗∗∗ 0.000002∗∗∗

(29.97) (19.08) (13.87) (13.24)
No. of Past Clicks 0.000799∗∗∗

(4.01)
Time Since Last Session 0.000067∗∗∗

(4.18)
Last Session Length 0.000351∗∗∗

(21.97)

User Fixed Effects X X X
Hour Fixed Effects X X X
No. of Obs. 201,466 201,466 190,206 190,206
R2 0.005 0.276 0.272 0.274
Adjusted R2 0.005 0.221 0.221 0.223

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table A8: Heterogeneity in gains from dynamic policy over myopic policy across the number of
prior sessions and other historical features. Numbers in parenthesis are t-statistics that are estimated
using OLS.

quadratic relationship shown in Figure 10. Second, inspired by this quadratic relationship, we re-run
the models of Table 6 while controlling for the squared term for the number of past impressions.

Our first robustness check seeks to examine whether the U-shaped pattern is observed in
regression specifications. The reason for this robustness check is to ensure that this pattern is not
driven by the aggregation at each quintile of the number of prior sessions. As such, we start with an
OLS model with Gaini as the outcome and the number of prior sessions and its squared term as
the independent variables for all sessions. We present the results of this model in the first column
of Table A8. Our estimated coefficients indicate a U-shaped pattern, with the second-order term
having a positive coefficient. We find the same pattern when we control for user and hour fixed
effects in the second column. Next, we show that the pattern is robust to the exclusion of the first
session for each user from the data, as shown in the third column. In the fourth column, we add
historical features similar to Table 6 and confirm the robustness of our results. Note that the reason
we do not add the number of past impressions or variety of ads seen is that these variables are highly
correlated with the number of sessions. Overall, our results in Table A8 confirm that there is a
U-shaped pattern between the number of prior sessions and gains from sequencing.
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Historical Features Dependent Variable: Gaini
(1) (2) (3) (4)

No. of Past Impressions 0.00002∗∗∗ 0.00001∗ 0.00001∗∗ 0.00001
(3.41) (2.39) (2.81) (1.45)

(No. of Past Impressions)2 -0.00000 -0.00000 -0.00000 -0.00000
(-1.17) (-0.91) (-1.15) (-0.39)

Variety of Ads Seen -0.00027∗∗ -0.00030∗∗ -0.00024∗ -0.00034∗∗∗

(-2.61) (-2.91) (-2.27) (-3.29)
No. of Past Clicks 0.00074∗∗∗ 0.00078∗∗∗ 0.00079∗∗∗

(3.62) (3.80) (3.87)
Time Since Last Session 0.00008∗∗∗ 0.00007∗∗∗

(4.89) (4.19)
Last Session Length 0.00036∗∗∗

(22.21)

User Fixed Effects X X X X
Hour Fixed Effects X X X X
No. of Obs. 190,206 190,206 190,206 190,206
R2 0.271 0.271 0.271 0.273
Adjusted R2 0.220 0.220 0.220 0.222

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table A9: Heterogeneity in gains from dynamic policy over myopic policy across the historical
features and the quadratic term for the number of past impressions. Numbers in parenthesis are
t-statistics that are estimated using OLS.

Since our regression models in Table 6 already account for the U-shaped pattern through the
number of past impressions and variety of ads seen that have opposing associations with the gains
from sequencing, we did not directly account for the quadratic term in our main analysis. However,
as a robustness check, we estimate the model in Table 6 while adding another independent variable:
the squared term for the number of past impressions. The motivation for this practice is the U-
shaped pattern illustrated in Figure 10 and Table A8. We want to see if the results of Table 6 remain
qualitatively unchanged when we account for this squared term.

We present the results from this robustness check in Table A9. Across specifications, we find
that the quadratic term is statistically insignificant. This is likely because the U-shaped relationship
is already accounted for with the mix of the number of past impressions and variety of ads seen. All
the qualitative insights remain the same as Table 6. The only difference is that in the fourth column
of Table A9, the coefficient for the number of past impressions is no more significant. This can be
due to the high correlation between this variable and its quadratic term.
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