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Abstract

Digital publishers often use real-time auctions to allocate their advertising inventory.
These auctions are designed with the assumption that advertising exposures within a
user’s browsing or app-usage session are independent. Rafieian (2019) empirically
documents the interdependence in the sequence of ads in mobile in-app advertising, and
shows that dynamic sequencing of ads can improve the match between users and ads.
In this paper, we examine the revenue gains from adopting a revenue-optimal dynamic
auction to sequence ads. We propose a unified framework with two components – (1) a
theoretical framework to derive the revenue-optimal dynamic auction that captures both
advertisers’ strategic bidding and users’ ad response and app usage, and (2) an empirical
framework that involves the structural estimation of advertisers’ click valuations as
well as personalized estimation of users’ behavior using machine learning techniques.
We apply our framework to large-scale data from the leading in-app ad-network of an
Asian country. We document significant revenue gains from using the revenue-optimal
dynamic auction compared to the revenue-optimal static auction. These gains stem
from the improvement in the match between users and ads in the dynamic auction. The
revenue-optimal dynamic auction also improves all key market outcomes, such as the
total surplus, average advertisers’ surplus, and market concentration.

Keywords: online advertising, dynamic mechanism design, ad sequencing, structural models,
optimal auctions, reinforcement learning
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1 Introduction
Mobile in-app advertising is now a significant source of revenue for publishers and ad networks. In
2018, over 56% of the total digital ad spend came from in-app advertising (eMarketer, 2018). Like
other digital advertising environments, mobile publishers use an auction to determine which ad to
show inside an app. An auction is a set of rules that characterizes how to allocate each advertising
space and how much each advertiser has to pay, given advertisers’ bids. Market outcomes under
each auction format can accordingly be different since advertisers can strategically vary their
bidding behavior. Thus, auction design plays a central role in the success of the digital advertising
ecosystem.

Publishers and ad-networks often use auctions that maximize their revenues.1 The common
practice in this industry is to use a first- or second-price auction with an optimally set reserve price.
This is in light of the findings from the seminal paper by Myerson (1981) that has shown these
auctions are revenue-optimal for a single item, under the regularity assumption. In an advertising
environment, these auctions are revenue-optimal if the publisher can treat each advertising space as
a single item: i.e., if advertising spaces are independent, and the auction outcome for one advertising
space does not create externalities affecting other advertising spaces.

In the context of mobile in-app advertising, Rafieian (2019) provides empirical evidence on the
interdependence of exposures within a session where a user is exposed to multiple short-lived ads.
He shows that each ad exposure creates externalities that affect future exposures and documents the
publisher’s gain from dynamic sequencing of ads, i.e., the policy that captures both the immediate
and future outcomes in a session and selects the ad that maximizes the expected number of clicks
from that point onward. These findings rule out the independence of advertising spaces within a
session, which in turn, imply that first- or second-price auction with an optimally set reserve price
is not revenue-optimal in the context of mobile in-app advertising.

While the results in Rafieian (2019) elucidate an opportunity to create value in this market by
dynamic sequencing of ads by enhancing consumer engagement and match values, the extent to
which the publisher can extract this value as revenue is not clear. Notice that advertisers are strategic
agents who can change their bids in response to any change in the allocation mechanism, and thereby
appropriate most of this created value. The prior literature on advertising dynamics has highlighted
the cases where advertisers can strategically make their ad scheduling decisions in competitive
environments (Villas-Boas, 1993; Dubé et al., 2005). More specific to online advertising auctions,
the prior literature has empirically shown situations where publishers cannot necessarily link the

1In this paper, we use the publisher, ad-network, and platform interchangeably, when we refer to the agent who designs
the auction and makes the ad allocation decision.
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improvement in the match to higher revenues in the presence of advertisers’ strategic behavior
(Athey and Nekipelov, 2010; Rafieian and Yoganarasimhan, 2020b). Thus, when the revenue is
the primary outcome of interest, it is crucial for the publisher to incorporate advertisers’ bidding
behavior as well as users’ ad response when designing the ad sequencing policy.

This brings us to the question of optimal auction design, wherein the publisher designs an auction
that maximizes her revenues. Our main goal is to theoretically develop the revenue-optimal dynamic
auction and compare its outcomes with the revenue-optimal static auction (second-price auction
with optimal reserve price). Overall, we aim to answer the following three research questions in this
paper:

1. How can we design a revenue-optimal dynamic auction that captures both inter-temporal
trade-offs in ad sequencing and advertisers’ strategic bidding behavior?

2. How can we build an empirical framework to evaluate the market outcomes such as publisher’s
revenues and advertisers’ surplus under any auction mechanism?

3. What are the gains from using a revenue-optimal dynamic auction as compared to the static one
in mobile in-app advertising? How is the advertisers’ surplus distributed across advertisers?
Do all advertisers benefit when the publisher uses a dynamic auction?

We need to overcome three major challenges to answer these questions. First, to design a
revenue-optimal dynamic auction, we need to specify an allocation rule that incorporates inter-
temporal trade-offs in ad interventions and a payment rule that governs advertisers’ strategic
bidding behavior. Second, to empirically evaluate market outcomes (e.g., publisher’s revenues)
under counterfactual auctions, we need to obtain accurate estimates of both advertisers’ and users’
behavior that are valid under any counterfactual auction. For the former, we need to estimate the
distribution of advertisers’ click valuations as it is the main structural parameter that governs their
bidding behavior in any auction. For the latter, we need to estimate users’ behavior: their likelihood
of clicking on an ad and leaving the session after seeing an ad under any counterfactual allocation
policy. Finally, to measure the gains from both dynamic and static revenue-optimal auctions, we
need to first solve for the equilibrium outcome under these counterfactual auctions and then use an
evaluation method that estimates the corresponding outcomes for each session.

We present an overview of our approach in Figure 1. This figure illustrates the general framework
in the top row and the details specific to our problem in the bottom row. In the general framework,
we begin with a theoretical framework that informs our empirical approach regarding how to develop
and evaluate optimal auctions. More specifically, we start with designing a revenue-optimal dynamic

4



Theoretical  

Framework 

Empirical  

Framework 

Policy Design  

+ Evaluation 

Revenue-Maximizing 

Mechanism Design with 

Dynamic Objective 

 

Backward Induction as 

Solution Concept 

+ Direct Method as 

Evaluation Method 

Structural Estimation 

of Advertisers’ Click 

Valuations  

Counterfactual  

Estimation of Click 

and Leave Outcomes 

Figure 1: An overview of our approach. The top row presents our general framework and the bottom
row shows the specific approach we take in this paper.

auction that gives us a combination of allocation and payment rules. This combination captures both
the inter-temporal trade-offs and advertisers’ bidding strategies. Since our theoretical framework
involves both advertisers’ and users’ behavior, our empirical framework requires an estimation
procedure that cover both these components. We accordingly break our empirical framework into
two separate tasks: (1) estimation of the distribution of advertisers’ click valuations since click
valuation is the key structural parameter governing advertisers’ bidding behavior in any auction,
and (2) personalized counterfactual estimation of click and leave outcomes, which are the two
user-dependent outcomes that affect the expected revenue per session. The second task is the same
as the empirical task in Rafieian (2019). We use the same approach in this paper to estimate users’
behavior under counterfactual auctions. Finally, we use all our estimates and numerically derive the
optimal policy using backward induction and evaluate this policy using the direct method.

Our theoretical framework directly addresses the first challenge and paves the way to address
other challenges. We build our theoretical model on the recent literature on dynamic mechanism
design that extends the approach in Myerson (1981) to a dynamic setting. The intuitive idea in
this literature is to use the Revelation Principle (Myerson, 1981) and exclusively focus on the case
where all bidders report their type truthfully (Kakade et al., 2013; Pavan et al., 2014). We use the
modeling framework in Kakade et al. (2013) as their separability assumption is particularly suitable
in our context: the value an advertiser extracts from an impression is the product of his private click
valuation and the expected probability of click on his ad. It allows us to write down the reward
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function in the Markov Decision Process (MDP henceforth) in terms of virtual valuations and click
probabilities (match valuations), thereby deriving the optimal allocation. Using this allocation
function, we can then set the payments such that advertisers will participate in the auction and
have no incentive to deviate from truthful reporting (IR and IC constraints). We then show that the
auction with these allocation and payment rules is revenue-optimal.

To address our second challenge, we propose a structural framework to estimate the distribution
of advertisers’ click valuation from their observed bids in the data. The key challenge is that
the auction format in the data is a quasi-proportional auction, where truthful bidding is not the
equilibrium strategy for advertisers. We first characterize the advertisers’ utility function in this
setting and then derive the equilibrium properties of this auction. Using the first-order condition,
we then write the advertisers’ click valuation in terms of their cost and the allocation function used
by the ad-network. Since both cost and allocation functions can be estimated from the distribution
of observed bids and auction configurations, click valuations are identified under the assumption
that advertisers are utility-maximizing. This allows us to estimate the distribution of advertisers’
click valuations as well as each advertiser’s click valuation.

Next, to develop the ad sequencing policy in the revenue-optimal dynamic auction, we need
to solve the MDP for the allocation function. While the transition function is the same as the
one in Rafieian (2019), the rewards have an additional multiplicative factor – each advertiser’s
virtual valuation. We can estimate it using the estimated click valuation for each ad as well as
the distribution of click valuations. We plug these estimates into the reward function and solve
the dynamic allocation policy using a backward induction solution concept. Finally, like Rafieian
(2019), we use a direct method approach for evaluation that directly uses our estimates to simulate a
session, equilibrium outcomes, and how it evolves. This method allows us to evaluate the revenue
outcome for each session.

We first present the results from our auction estimation framework. We theoretically show that
advertisers bid roughly half of their click valuations in the quasi-proportional auction. As such, the
distribution of bids alone can approximate the distribution of click valuations. Further, it suggests
that the current mechanism (quasi-proportional auction) leads to a substantial loss for the platform in
terms of both revenue and efficiency. We then focus on the estimated distribution of click valuations
from our structural framework, and empirically show that the regularity assumption is satisfied in
our context: the virtual valuations are strictly increasing in click valuations. This is an important
requirement for our counterfactual analysis, as the solution to the optimal auction is tractable given
this assumption.

Next, we conduct our counterfactual analysis to examine the gains from the revenue-optimal
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dynamic auction. We set the benchmark as the second-price auction with an optimal reserve price,
as it is the revenue-optimal static auction. Our results indicate that the expected revenue per session
is 1.60% higher under the revenue-optimal dynamic auction compared to that in the revenue-optimal
static auction. This is particularly important because most platforms currently use a version of
the static revenue-optimal auction. Thus, our results suggest that publishers and ad-networks can
significantly benefit from adopting an optimal dynamic auction. Further, we find that the expected
number of clicks per session also improve by 1.80% under the dynamic case, suggesting that the
gains in revenues can mostly be attributed to the improved match between users and ads as a result
of dynamic sequencing, and not to the greater ability of the publisher to extract rent from advertisers.

We then focus on other market outcomes and show that the optimal dynamic auction achieves
better outcomes than the optimal static auction in terms of both total surplus and average advertisers’
surplus: the total surplus (efficiency) and the average advertisers’ surplus increases by 1.77% and
3.00% under the optimal dynamic auction respectively. Hence, we show that the optimal dynamic
auction does not achieve revenue optimality at the expense of efficiency. We then explore the surplus
gains across advertisers to see whether the market will become more concentrated as a result of
using the revenue-optimal dynamic auction. Using a Herfindahl-Hirschman Index (HHI), we find
that the optimal dynamic auction has a lower concentration index than the optimal static auction.
This suggests that the reason is that the optimal dynamic auction allocates more to the ad with the
second largest surplus, thereby closing the gap between the top two advertisers in an auction.

In sum, our paper makes three key contributions to the literature. First, from a methodological
point-of-view, we propose a unified dynamic framework that captures both advertisers’ and users’
behavior to optimize publisher’s revenue. A key contribution of our framework is in illustrating
how we can use a theoretical framework to break a complex applied problem into a composite
of structural estimation and machine learning tasks. To our knowledge, this is the first paper to
empirically examine the revenue gains from dynamic sequencing of ads using an optimal dynamic
auction. Second, we present a structural estimation framework to recover the distribution of bidders’
private valuations from their observed bidding behavior in a quasi-proportional auction. This is the
first paper to propose an estimation procedure for quasi-proportional auctions. Our framework can
easily be extended to auctions with non-deterministic allocation rules. Third, from a substantive
viewpoint, we establish the revenue gains from adopting a dynamic objective in allocating ads, as
opposed to a static objective. This is of particular importance, as the current practice in the industry
is to use a static objective. We expect our findings to be of relevance to publishers and ad-networks.
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2 Related Literature
First, our paper relates to the growing literature on dynamic mechanism design. While early
papers in this literature start in 1980s (Baron and Besanko, 1984; Myerson, 1986; Riordan and
Sappington, 1987), most of the major developments in this literature appear more recently, with
generic characterizations of both efficient mechanisms (Bergemann and Välimäki, 2010; Athey and
Segal, 2013) and revenue-maximizing (optimal) mechanisms (Kakade et al., 2013; Pavan et al.,
2014). The majority of applied papers on dynamic mechanism design focus on cases where the
inter-temporal trade-offs arise through the dynamics of arrival, departure, or population (Vulcano
et al., 2002; Parkes and Singh, 2004; Gallien, 2006; Said, 2012). Our paper adds to this literature by
empirically evaluating dynamic mechanisms in a digital advertising context. To our knowledge,
this is the first paper to provide an empirical framework to examine the performance of dynamic
mechanisms.

Second, our paper relates to the literature on the intersection of mechanism design and online
advertising. Early papers in this area examines the theoretical properties of different auctions in
sponsored search context (Edelman et al., 2007; Varian, 2007; Lahaie et al., 2007). More specific to
our context, a series of work takes externalities in search advertising into account and revisits the
question of mechanism design in a context where the higher position of an ad may affect the user’s
decision to even see lower ranked ads (Ghosh and Mahdian, 2008; Kempe and Mahdian, 2008;
Ghosh and Sayedi, 2010). In the context of video ads, Kar et al. (2015) adopt a cascade model
similar to Kempe and Mahdian (2008), and provide a mechanism for selection and ordering of video
ads. While this stream of work proposes simple mechanisms for allocation, they are only applicable
to very basic and unrealistic case where the externality is only imposed through the user’s leaving
decision. We extend this literature by offering a dynamic framework that captures more complex
externalities, under a plausible separability assumption.

Lastly, our paper relates to economics and marketing literature on the estimation of auctions.
A significant breakthrough in this literature comes from Guerre et al. (2000) who base their
identification strategy on the fact that the equilibrium outcome is achieved when all agents maximize
their profits given the distribution of others’ behavior. While they study the first-price auction
with symmetric independent private valuations and without unobserved heterogeneity, other papers
in this literature build on this work and extend it to the cases with affiliated private valuations
(Li et al., 2002), asymmetric private valuations (Campo et al., 2003), unobserved heterogeneity
(Guerre et al., 2009; Krasnokutskaya, 2011), and also different auctions such as scoring auctions
(Bajari et al., 2014) and beauty contest auctions (Yoganarasimhan, 2015). Related to our setting, a
few papers study online advertising auctions and propose different empirical approaches for the
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estimation of advertising auctions (Athey and Nekipelov, 2010; Yao and Mela, 2011; Choi and
Mela, 2016). Please see Bucklin and Hoban (2017) and Choi et al. (2020) for excellent summaries
of models of online advertising in the marketing literature. Our paper adds to this literature by
proposing an estimation approach for quasi-proportional auctions that can easily be extended to any
randomization-based auction. Further, our counterfactual analysis is the first to consider a dynamic
mechanism design in an online advertising context.

3 Optimal Auctions
The main results in Rafieian (2019) establish the gains from the dynamic sequencing of ads in terms
of the expected number of clicks generated per session. Intuitively, we expect the increase in the
number of clicks to be linked to higher publisher revenues, as clicks are the key revenue-generating
source for publishers. However, the fact that advertisers can respond to the change in the allocation
by changing their bids in an auction environment makes it unclear how the publisher can extract
more revenues from dynamic sequencing of ads. For example, if advertisers decrease their bid as a
response to better allocation by dynamic sequencing in the equilibrium, the publisher may end up
selling more clicks at a lower price. Thus, it is crucial to take advertisers’ bidding behavior into
account if the publisher wants to maximize her revenues through adaptive ad sequencing.

To examine revenue gains from adopting a dynamic framework, we incorporate advertisers’
utility model into our framework and design revenue-optimal auctions with both dynamic and static
objectives. Our framework, in turn, captures both users’ behavior and advertisers’ strategic bidding.
The publisher’s problem is then to design an auction with certain allocation and payment rules that
maximizes her revenues, i.e., the total payments made by advertisers. To find the revenue-optimal
auctions under each objective, we build on the seminal paper by Myerson (1981) and design the
allocation and payment rules in the auction to maximize publisher revenues.

This section proceeds as follows: We first define our model environment and assumptions in
§3.1. We then introduce the case where the publisher’s objective is static and discuss the optimal
auction in this case in §3.2. In §3.3, we focus on the optimal auction with a dynamic objective and
present the allocation and payments rules in this case.

3.1 Auction Environment and Assumptions

We now describe the auction environment in this problem. For each session i, there are Ai risk-
neutral bidders competing for impressions in this session. Each advertiser a has a private click
valuation xa which is drawn from the distribution Fa with support [

¯
xa, x̄a]. This parameter is a

private signal that reflects how much the advertiser values a click. We assume that each ad’s private
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valuation is independent of other ads’ private valuation and does not vary across impressions.2 The
total value generated from showing ad a at exposure t of session i will then be the product of that
ad’s click valuation and the probability of click on that ad, which can be written as follows:

wi,a,t(xa;Si,t) = xaP (Yi,t | a, Si,t), (1)

where wi,a,t(xa;Si,t) is the total value ad a receives from being shown at exposure t of session i,
and Si,t is the state variable at that point which captures the prior history of actions and outcomes
within the session, as well as the pre-session information (Please see §4.2.1 in Rafieian (2019) for
more details on state variables).

The publisher’s problem is to design a mechanism/auction that maximizes her revenues. Each
mechanism is characterized by two components – (1) allocation rule, and (2) payment rule. We can
define any mechanism as follows:

Definition 1. A mechanism M(q, e) is defined as a combination of an allocation rule q(·) and a

payment rule e(·). Given a profile of reported bids b = (b1, b2, . . . , bA), we can characterize the

allocation and payment rules for each ad in the exposure number t in session i as follows:

• The allocation rule qMi,a,t(b;Si,t) determines the probability that the item is allocated to a.

• The payment rule eMi,a,t(b;Si,t) determines what ad a pays in expectation.

We assume that the publisher has full commitment power, i.e., the players believe that the
publisher follows the rules. Now, under any mechanism M(q, e), we can characterize advertiser’s
utility function. The only decision variable for any advertiser is to submit a bid that reflects their
willingness to pay for a click on their ad. Given advertiser a’s bid, we can characterize their utility
in exposure t of session i as follows:

uMi,a,t(ba;xa, Si,t) = Eb−a

[
wi,a,t(xa;Si,t)q

M
i,a,t(b;Si,t)− eMi,a,t(b;Si,t)

]
, (2)

where b−a is a bid profile of all ads except a, and b is the profile of all bids. We assume that
advertisers maximize their utility.

3.2 Warm-Up Case: Optimal Static Auction

We begin by describing the case where the publisher’s objective is static. In this case, the publisher
only considers the current period rewards. As such, at any point, the goal is to sell the slot to the ad
that maximizes the publisher’s revenues. The analysis of this case is almost identical to that of the
2We can extend our theoretical analysis to the cases where click valuations vary across sessions and exposures. However,
in our empirical analysis, we can only identify one value for each ad. This is why we restrict our attention to this case.
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seminal paper by Myerson (1981) on optimal auctions. However, we present this case as a warm-up
example for our main goal – deriving the optimal dynamic auction.

In general, the choice of the optimal auction may seem impossible as there is no bound on the
set of feasible auctions. However, in light of the Revelation Principle and without loss of generality,
we can only focus on direct-revelation mechanisms wherein advertisers truthfully bid their click
valuations (Myerson, 1981). A direct revelation mechanism is feasible if it satisfies:

1. Plausibility: For any profile of reported click valuations x, we have
∑

a∈Ai qi,a,t(x;Si,t) ≤ 1

and qi,a,t(x;Si,t) ≥ 1 for all a ∈ Ai. This condition guarantees that each impression is
allocated to at most one ad.

2. Individual Rationality (IR): Given reported click valuations, all advertisers receive non-
negative utility, i.e., uMi,a,t(xa;xa, Si,t) ≥ 0 for all a ∈ Ai. This condition guarantees that all
competing ads for a session will participate in the auction.

3. Incentive Compatibility (IC): No advertiser has incentive to deviate from bidding truthfully,
given that everyone else bids truthfully. Therefore, we have:

uMi,a,t(xa;xa, Si,t) ≥ uMi,a,t(ba;xa, Si,t) (3)

for any ba ∈ [
¯
xa, x̄a]. This condition guarantees that reporting truthfully is a Bayesian Nash

Equilibrium for all advertisers.

The Revelation Principle helps us reduce the set of all auction to the set of feasible direct revelation
mechanism denoted by Mdirect. As such, our search is over a more structured set with clear
constraints. We can write the publisher’s optimization problem as follows:

max
M∈Mdirect

Ex

[∑
a∈Ai

eMi,a,t(x;Si,t)

]
(4)

In this optimization, M ∈ Mdirect implies that the mechanism must satisfy all three constraints
presented above. While focusing only on feasible direct revelation mechanisms helps constrain the
problem, we still need further transformations to find the optimal solution. One key transformation
is to use envelope condition instead of the IC constraint. The following lemma shows the link
between these two:
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Lemma 1. If the mechanism M(q, e) is IC, we have:

uMi,a,t(xa;xa, Si,t) = uMi,a,t(x
′
a;x
′
a, Si,t)

+ P (Yi,t | a, Si,t)
∫ xa

x′a

Ex−a
[
qMi,a,t(ba, x−a;Si,t)

]
dba

(5)

Now, we can use this lemma to derive the publisher’s expected revenue under any IC mechanism
as follows:

Lemma 2. If the mechanism M(q, e) is IC, the publisher’s expected revenue can be written as

follows:

Ex

[∑
a∈Ai

(
xa −

1− Fa(xa)
fa(xa)

)
P (Yi,t | a, Si,t)qMi,a,t(x;Si,t)

]
−
∑
a∈Ai

uMi,a,t(¯
xa;

¯
xa, Si,t) (6)

The result of Lemma 2 is transformative in finding the optimal auction, as for any given
environment, the expected revenue of an auction only depends on the allocation at the equilibrium
and advertisers’ expected utility of their lowest click valuation. We can now use Equation (6) as
the objective function and maximize it subject to the Plausibility and Individual Rationality (IR)

constraints and obtain the optimal auction.
Another important feature of writing the objective function in Equation (6) is that it additively

separates allocation and payment functions: the first component is independent of the payment
function. Thus, one candidate for the optimal auction is to find a plausible allocation function that
maximizes the first component and a payment function that minimizes the second component. This
brings us to the following proposition:

Proposition 1. The mechanism M(q, e) is optimal if q maximizes

Ex

[∑
a∈Ai

(
xa −

1− Fa(xa)
fa(xa)

)
P (Yi,t | a, Si,t)qMi,a,t(x;Si,t)

]
(7)

subject to q being plausible and Ex−a
[
qMi,a,t(xa, x−a;Si,t)

]
increasing in xa, and the payment

function e is

eMi,a,t(x;Si,t) = wi,a,t(xa;Si,t)q
M
i,a,t(x;Si,t)− P (Yi,t | a, Si,t)

∫ xa

¯
xa

qMi,a,t(ba, x−a;Si,t)dba (8)

As shown in Proposition 1, we can solve for the optimal allocation and payment functions. In
next sections, we discuss the details of each component.
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3.2.1 Allocation Rule

Proposition 1 offers a constrained optimization to find the allocation function under the static case.
Without the constraint on Ex−a

[
qMi,a,t(xa, x−a;Si,t)

]
being increasing in xa, we can simply maximize

the objective function by allocating to the ad with the highest
(
xa − 1−Fa(xa)

fa(xa)

)
P (Yi,t | a, Si,t).

However, there is no guarantee whether the constraint is satisfied unless we impose the following
assumption on the distribution Fa for all ads:

Assumption 1. Distribution Fa is regular, i.e., the function ca(xa) = xa − 1−Fa(xa)
fa(xa)

is strictly

increasing in xa.

It is worth noting that this is not an unrealistic assumption, since most familiar distributions
satisfy this condition. Under this assumption, the resulting allocation rule will allocate the item to
ad with the highest non-negative ca(xa)P (Yi,t | a, Si,t) for any exposure t in session i. If all values
are negative, the publisher does not sell the item. It is easy to show that under this allocation, the
constraint on Ex−a

[
qMi,a,t(xa, x−a;Si,t)

]
being increasing in xa is satisfied: an increase in xa will

increase the expected probability of winning the item for ad a, since ca(xa) is increasing in xa.

3.2.2 Payments

Following Equation (8) in the second part of Proposition 1, we can now determine the optimal
payment functions, consistent with the allocation function presented in §3.2.1. We can show that in
this case, losing ads will not pay anything: the first component in Equation (8) is zero, and it is easy
to show that the integral is also zero. The payment for the winning ad, however, can be calculated
as follows:

eMi,a,t(x;Si,t) = wi,a,t(xa;Si,t)q
M
i,a,t(x;Si,t)− P (Yi,t | a, Si,t)

∫ xa

¯
xa

qMi,a,t(ba, x−a;Si,t)dba

= wi,a,t(xa;Si,t)− P (Yi,t | a, Si,t)
∫ xa

xa

dba

= xaP (Yi,t | a, Si,t),

(9)

where xa is the minimum bid that still wins the impression for the winning ad. The simple allocation
rule in the static case helps us find the analytical solution to the integral in Equation (8). With this
payment rule, it is easy to check the incentive compatibility of the proposed optimal mechanism.

Finally, if we consider the case of symmetric click valuations, we can simplify the optimal
auction to a greater extent. In this case, instead of having ad-specific distributions Fa for each ad,
we have one distribution F from which all click valuations are drawn independently. We can show
the following corollary for this specific case:
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Corollary 1. With symmetric independent click valuations, the optimal auction is a second-price

auction with a reserve price of c−1(0). The auction allocates the item to the ad with the highest

wi,a,t(xa;Si,t) and that ad pays the second-highest wi,a,t(xa;Si,t) in expectation.

Thus, the optimal auction either allocates the impression to the highest valuation advertiser or
does not allocate it at all, meaning that it never allocates an impression to an advertiser who does
not have the highest valuation for that impression.

3.3 Optimal Dynamic Auction

We now focus on the optimal auction with the dynamic objective. In this case, the publisher
wants to incorporate the expected future revenues as well as expected revenues from the current
period. This is in contrast with optimal static auction where the publisher only cares about her
expected revenues in the current period. The publisher’s goal in this dynamic environment is
to design a mechanism M(q, e) that maximizes her expected revenues from the session, i.e.,
E
[∑∞

t=1 β
t−1
(∑

a∈Ai e
M
i,a,t(b;Si,t)

)]
.

This change in the publisher’s objective clearly changes critical aspects of our environment. The
most important change is that the publisher no more sells each exposure t in session i, but rather
auctions off the entire session i. As such, the optimal auction in the static case is no more optimal
under the current objective. An important factor that helps us simplify the dynamic problem is
that only one piece is private to each advertiser in the entire session: their click valuation xa. That
is, advertisers’ click valuation will not change within the session, and anything that changes their
overall valuation of each impression (e.g., the probability of click in different states) is common
knowledge. Thus, we can treat this problem as a case of static auction where advertisers just submit
only one bid and the publisher decides how to allocate the exposures within the session, using a
dynamic objective.

In line with the change in the publisher’s objective, we must re-define advertisers’ utility function
for the session as follows:

UM
i,a(ba;xa, Si) = E

[
∞∑
t=1

βt−1
(
wi,a,t(xa;Si,t)q

M
i,a,t(b;Si,t)− eMi,a,t(b;Si,t)

)]
, (10)

where the expectation is taken over bidding strategies and the mechanism, and Si denotes the
pre-session information.

Similar to the static case, without loss of generality, we only focus on dynamic direct revelation
mechanisms to find the optimal auction (Myerson, 1986). As such, for the dynamic case, we re-write
the requirements for a feasible direct revelation mechanism as follows:
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1. Plausibility: This condition states that at each time period, the exposure is allocated to at
most one ad, given that advertisers report their click valuations truthfully. That is, we have∑

a∈A qi,a,t(x;Si,t) ≤ 1 and qi,a,t(x;Si,t) ≥ 1 for all a ∈ A and for any t in session i.

2. Individual Rationality (IR): Given truthful reporting of click valuations, the advertiser’s
expected utility over the session is non-negative, i.e., UM

i,a(xa;xa, Si) ≥ 0 for all a ∈ Ai.

3. Incentive Compatibility (IC): No advertiser has incentive to deviate from bidding truthfully,
given that everyone else reports their bid truthfully. Hence, we can write:

UM
i,a(xa;xa, Si) ≥ UM

i,a(x′a;xa, Si) (11)

where the expectation is taken over other advertisers’ click valuations and the mechanism.
This constraint guarantees that truth-telling is a Bayesian Nash Equilibrium for all advertisers.

While this restriction to the direct revelation mechanisms reduces the set of auctions the publisher
considers, we still need some transformations in these constraints to be able to solve for the optimal
mechanism. Like the static case, we show the resulting envelope condition from the IC constraint in
the dynamic case as follows:

Lemma 3. If the mechanism M(q, e) is IC, we have:

UM
i,a(xa;xa, Si) = UM

i,a(x′a;x
′
a, Si)

+

∫ xa

x′a

Ex−a

[
∞∑
t=1

βt−1P (Yi,t | a, Si,t)qMi,a,t(ba, x−a;Si,t)

]
dba

(12)

Now, with the dynamic version of the envelope condition, we can show that the publisher’s
expected revenues under any IC mechanism can be written as follows:

Lemma 4. If the mechanism M(q, e) is IC, the publisher’s expected revenue can be written as

follows:

Ex

[
∞∑
t=1

βt−1

(∑
a∈Ai

(
xa −

1− Fa(xa)
fa(xa)

)
P (Yi,t | a, Si,t)qMi,a,t(xa;Si,t)

)

−
∑
a∈Ai

UM
i,a(

¯
xa;

¯
xa, Si)

] (13)

Lemma 4 is the equivalent of Lemma 2 for the dynamic case. Now, if we optimize this new
objective subject to both Plausibility and Individual Rationality, we can find the optimal auction.
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Further, an important finding of this lemma is that the publisher’s revenues cannot exceed the
first component in Equation (13). Thus, roughly speaking, if we find a dynamic allocation policy
that maximizes the first component and payments are such that the second component is zero, the
corresponding mechanism is optimal. More precisely, we can write the following proposition on the
optimal auction with dynamic objective as follows:

Proposition 2. The mechanism M(q, e) is optimal if q maximizes

Ex

[
∞∑
t=1

βt−1

(∑
a∈Ai

(
xa −

1− Fa(xa)
fa(xa)

)
P (Yi,t | a, Si,t)qMi,a,t(xa;Si,t)

)]
(14)

subject to q being plausible and Ex−a
[∑∞

t=1 β
t−1P (Yi,t | a, Si,t)qMi,a,t(xa, x−a;Si,t)

]
increasing in

xa, and the payment function e is

eMi,a(x;Si) =E

[
∞∑
t=1

βt−1
(
wi,a,t(xa;Si,t)q

M
i,a,t(x;Si,t)

)]

−
∫ xa

¯
xa

E

[
∞∑
t=1

βt−1P (Yi,t | a, Si,t)qMi,a,t(ba, x−a;Si,t)

]
dba,

(15)

where the expectation is taken over the stochasticity induced by the dynamic process and state

transitions, and not over other advertisers’ click valuations.

This proposition states that if an allocation mechanism that maximizes the first part of Equation
(13) and sets the payment to make the second part zero, this mechanism is optimal if the allocation
mechanism satisfies both plausibility and monotonicity conditions. We explain the details of both
allocation and payment components in next sections.

3.3.1 Allocation Rule

We start by finding the optimal allocation rule. Again, we impose the assumption that the distribution
Fa is regular for each ad a, i.e., ca(xa) = xa − 1−Fa(xa)

fa(xa)
is increasing in xa. In the static case, we

show that under this assumption, the optimal ad at any time period is simply the one that maximizes
ca(xa)P (Yi,t | a, Si,t). In the dynamic case, however, we want to design a dynamic allocation policy
that maximizes the expected revenues for the entire session.

An important result of Lemma 4 is that we can re-write the reward function that is independent
of payments. We present a generic definition of reward function with revenue-maximizing objective
as follows:

Rr
t (a;Si,t) =

(
xa −

1− Fa(xa)
fa(xa)

)
P (Yi,t | a, Si,t) (16)
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Now, we can use the reward function in Equation (16) to write down the publisher’s optimization
problem and find the optimal allocation. The following lemma characterizes the optimal allocation
function:

Lemma 5. If the distribution Fa is regular for each ad a (i.e., ca(xa) = xa − 1−Fa(xa)
fa(xa)

is increasing

in xa), then the optimal allocation is the solution to the following Markov Decision Process:

argmax
a
Rr
t (a;Si,t) + βEGi,t+1|Si,t,a

[
V r
t+1(Gi,t+1)

]
, (17)

where the value function is defined for each exposure number as follows:

V r
t+1(Si,t) = max

a
Rr
t (a;Si,t) + βEGi,t+1|Si,t,a

[
V r
t+1(Gi,t+1)

]
(18)

Depending on the context of our problem, we can use various approaches to design the optimal
dynamic allocation policy. Based on this dynamic policy, we can then easily define the allocation
function qi,a,t(x, Si,t). This lemma guarantees that under the assumption that click valuations come
from a regular distribution, the chosen q based on Equation (17) and Equation (18) satisfies both
plausibility and monotonicity constraints.

3.3.2 Payments

The intuition behind the payment function in the dynamic case is the same as that in the static case.
Each advertiser pays the expected valuation they received from the session, minus an informational
rent which is determined by integration of their allocation over the set of lower possible values.
This payment function guarantees that the IR constraint is satisfied and the second component in
Equation (13) will be zero.

While the informational rent has an analytical solution in the static case as shown in Equation
(9), it is harder to derive it analytically in the dynamic case, since the allocation function contains
more elaborate rules. The first component in Equation (15) is the expected valuation advertiser a
receives from the session, and the second component is the informational rent. To calculate the
amount of this rent, we basically need to move down from the true click valuation and see how
the number of impressions allocated to advertiser a shrinks. Integrating over this function over the
possible values will then give us the amount of rent advertiser a is able to extract. Intuitively, it is
the total leeway advertiser a has in this optimal auction.
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4 Empirical Strategy
In light of the theoretical results in Proposition 1 and 2, we can characterize the reward function at
any point for both static and dynamic cases as follows:

Rr
t (a;Si,t) =

(
xa −

1− Fa(xa)
fa(xa)

)
P (Yi,t | a, Si,t), (19)

where Si,t is the set of state variables in session i at exposure t. Since the reward specification is the
same at any point, we can present a unifying specification of the publisher’s optimization in both
static and dynamic cases as follows:

argmax
a
Rr
t (a;Si,t) + βESi,t+1|Si,t,a

[
V r
t+1(Si,t+1)

]
, (20)

where β = 0 when the objective is static and the value function is defined as the maximum future
rewards at a given state.

Given the unified optimization problem in Equation (20), we need to know three key elements to
determine the outcomes: (1) distribution of click valuations, (2) match values or click probabilities,
and (3) distribution of transitions. The first two elements are required for both static and dynamic
objectives, whereas the distribution of transitions is only required for the dynamic case. To conduct
an empirical analysis of both static and dynamic optimal auctions presented in §3, we need to obtain
estimates for all three unknown elements in Equation (20). Thus, we can identify three empirical
tasks as follows:
Task 1: For any ad a in the data, we want to estimate the click valuations xa based on their observed
bidding behavior in the data, under the quasi-proportional auction.
Task 2: For any set of state variables observed in the data, we want to accurately estimate the click
probability for all ads if shown in that impression. That is:

ŷi,t(a;Si,t) = P (Yi,t | a, Si,t),∀a (21)

Task 3: For any set of state variables observed in the data, we want to accurately estimate the leave
probability for all ads if shown in that impression. That is:

l̂i,t(a;Si,t) = P (Li,t | a, Si,t),∀a (22)

The empirical strategy for Tasks 2 and 3 is presented in Rafieian (2019) in great details. We use
the same approach for these tasks. We present our empirical strategy to estimate the click valuations
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in this section.

4.1 Setting

The setting of this problem is the same as that of Rafieian (2019). However, since we are interested
in estimation of click valuations, we present more details on the auction environment and advertisers’
decisions in this section.

4.1.1 Auction Mechanism

For any exposure that is recognized, the ad-network runs an auction to serve an ad. Unlike the
common practice in this industry, the ad-network runs a quasi-proportional auction to select the ad
for each exposure. The most notable feature of this auction is in the probabilistic allocation rule that
is in contrast with the commonly used mechanisms such as first- or second-price auctions.

1. Reserve Price: There is a reserve price b0 that advertisers’ bid must exceed to participate in
the auction.

2. Allocation Function: For any exposure i and any set of participating ads Ai with bidding
profile (b1, b2, . . . , b|Ai|), ad a has the following probability to win each exposure t within
session i:

qpi,a,t(b; z) =
baza∑
j∈Ai bjzj

, (23)

where za is ad a’s quality score which is a measure reflecting the profitability of ad a. The
rationale behind using such quality score adjustments is to run the auction based on the
expected revenue the ad-network can extract from the ad, rather than their willingness to pay
per click. For example, there may be an ad with a very high bid but no chance of getting a
click. So despite its high willingness to pay per click, the ad-network cannot actually extract
much from it as it will not get many clicks.

While quality scores can technically vary across auctions, the ad-network does not update
them regularly. They only take value zero when the ad is not available for the auction due
to budget exhaustion or targeting decisions. Likewise, bids do not change across t, since
advertisers cannot choose their bids per auction3. Further, changing bids is unlikely as bids
reflect advertisers’ structural parameters that are stable across auctions.

3. Payment Scheme: The ad-network employs a cost-per-click (CPC henceforth) payment
scheme wherein advertisers are only charged when a user clicks on their ad. The amount an

3There are over 500 auctions run in a second and the information shared with advertisers is minimal about them,
disabling them from distinguishing auctions.
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ad is charged per click is determined by a next-price rule similar to that of Google’s sponsored
search auctions. That is, ads are first ranked based on their product of bid and quality score,
and each ad pays the minimum amount that guarantees their rank, if a click happens on their
ad:

epi,a,t(b; z) = inf

{
b′ |

∑
j∈Ai,j 6=a

1(b′za ≤ bjzj) =
∑

j∈Ai,j 6=a

1(baza ≤ bjzj)

}
, (24)

where
∑

j∈Ai,j 6=a 1(baqa ≤ bjqj) indicates the rank of advertiser a, and the payment b′ is the
minimum amount of bid that guarantees the same rank for ad a. For example, if there are
three bidders with bids 1, 2, and 3, and quality scores 0.1, 0.2, and 0.3, the scores will be
0.1, 0.4, and 0.9. Now, if the second-ranked bidder gets a click, she will pay the price that
would have guaranteed her second rank. That is, she only needs to pay 1×0.1

0.2
= 0.5, as it

guarantees her score to be higher than the third-ranked bidder. Since the item being sold is a
click, advertisers’ bids reflect their willingness to pay per click. Our goal is to use advertisers’
observed bid to estimate their click valuations.

4.1.2 Advertisers’ Decisions

Advertisers can make the following decisions:

• Bid: Advertisers can set their bid indicating how much they are willing to pay per click.

• Targeting: Advertisers can specify their targeting decisions on the following variables: (1) app
category, (2) province, (3) hour of the day, (4) smartphone brand, (5) connectivity type, and (6)
mobile service provider (MSP). As such, they can exclude some categories from the variables
listed above. It will guarantee that their ad will not be shown in the excluded categories.

• Budget: Advertisers become unavailable if they do not have enough budget in their account.
They can refill their budget and make their campaigns available again.

• Design of the Banner: They can design a small banner for their ad.

While we mainly focus on their bidding behavior, it is important to take into account what other
decisions they can make. Further, it is important to notice what information they receive from the
auction. Each advertiser has a profile in which she can track some key performance metrics on an
hourly basis such as the number of impressions, number of clicks, and the total cost of clicks. As
such, they do not have granular access to exposure-level information and can only incorporate this
information at an aggregate level.

4.2 Data

We use data from a leading in-app ad-network in a large Asian country for over a one week time
period from October 22 to 30 in 2015. The analysis sample is the same as the one in Rafieian
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(2019). However, for estimation of auction, we use all the impressions as it adds to the precision of
our estimates. The original data are at the impression-level, indicating the characteristics of each
impression, the ad shown, and the final clicking decision by the user. Please see § 3.2.1 in Rafieian
(2019) for the description of impression-level data.

The data required for the estimation of auction are not readily available, but we can construct
that from the impression-level data. Auction information in the impression-level data is limited to
the winning ad and the bid and potential CPC for that particular ad. However, for estimation of
auction, we need more information on each auction (impression) regarding the losing ads as well as
their bids. We use the filtering strategy presented in § 5.1.1 in Rafieian (2019).

The idea is simple: ad a is available for session i if these two conditions hold: 1) ad a has
enough budget at the time of session i, and 2) ad a has not excluded any targeting categories in
auction i. The former can easily be verified by looking at time-stamp for impressions ad a has
won and inferring unavailability by identifying discontinuities. The latter can also be verified by
inferring ad a’s targeting decisions from impressions ad a has won around the time of session i: if ad
a’s targeting decisions match with targeting variables in session i and this ad is available around the
time of this session, it satisfies both requirements and participates in this auction. A few noteworthy
factors in the data help in drawing accurate inferences. First, in a data-rich environment like this,
identification of discontinuities and targeting decisions is not challenging. Second, advertisers do
not frequently change their targeting decisions, making the inference easier on them.

Overall, it provides us with 547,626,756 impressions and 398 distinct ads competing to win the
impressions.

4.2.1 Summary Statistics

Here we present some summary statistics of the data. Overall, there are 398 ads participating in
the timeline of the study. Table 1 shows mean, standard deviation, minimum and maximum of
key ad-level variables. All these variables are defined by ads and reflect an important aspect of
advertiser’s decision, including bidding, targeting, and budget.

Variable Mean Std. Dev Min Max
Bid 411.13 208.25 300.00 2976.00
Avg. CPC 363.30 103.98 300.00 1375.84
Total Hours of Availability 48 70 1 217
No. of Impressions 1,379,411 5,402,346 7 66,228,977
No. of Clicks 12,619 55,208 0 656,680
Click-Through Rate 0.0109 0.0112 0.0000 0.1429
Total Expenditure 4,880,013 21,032,815 0 216,434,237

Table 1: Summary statistics of key ad-level variables
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As shown in this table, there is substantial variation in ads participating in this auction, ranging
from smaller ads with a very short lifetime and few clicks, to larger ads with permanent availability
and significant expenditure. Further, Table 1 presents number of categories targeted out of all 86
targeting categories, indicating that most ads are not targeting at all.

Figure 2 shows the the empirical CDF of ads’ bids and their average CPC. The figure on the left
(Figure 2b) shows the distribution for all values of bids. As shown in this figure, there is a reserve
price 300 that censors the left side of the graph. With no reserve price, there could have been bids
lower than 300. This raises an important identification challenge that we address in the estimation
approach, especially because a substantial portion of ads are reserve bidders.
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Figure 2: Empirical CDF of ads’ bids and average CPCs.

Figure 2b zooms into the bids for a shorter interval of amounts that capture over 90% of all ads.
While there are discontinuities in bids especially at round numbers, average CPCs show a smoother
pattern. Overall, both figures demonstrate a first-order stochastic dominance relationship between
the empirical CDF of average CPC and bids which emphasizes the fact an ad’s CPC cannot exceed
her bid.

4.3 Estimation of Auction

We now present our approach to estimate the distribution of click valuations from the observed
auction data. We first develop advertisers’ utility model and provide and equilibrium analysis in
§4.3.1. We then state the set of assumptions required for the identification of the distribution of
click valuations in §4.3.2. Finally, in §4.3.3, we propose our estimation approach.
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4.3.1 Advertisers’ Model

We begin by characterizing advertisers’ utility model in the context of our data. Given the allocation
and payment functions defined in §4.1.1, we know that advertiser a receives the following utility
from exposure t in session i:

1(Ai,t = a, Yi,t = 1)
(
xa − epi,a,t(b)

)
,

where the indicator function takes value one if ad a is selected through the allocation mechanism
and got clicked in that impression. Here we explicitly assume that advertisers only receive utility
from clicks and there is no utility from an impression alone.4

Mirrokni et al. (2010) study this auction with the case of identity cost function, i.e., epi,a,t(b) = ba.
They show that advertisers’ optimal bidding strategy depends on their expected probability of
winning. While this expected probability varies across auctions in our case, we do not observe
bid-changing behavior. This is possibly because the effect of the expected probability of winning
on their bid is very small in a competitive market and it does not exceed the bid-changing cost.5

The observation that advertisers do not change their bids informs us in modeling advertisers’
utility function. We can characterize the expected utility of advertiser a from quasi-proportional
auction p as follows:

upa(ba;xa) = ma (xaq̃
p
a(ba)− ẽpa(ba)) , (25)

where ma is the expected probability of click on ad a conditional on winning. Since we treat this
probability as independent to other parts of the expected utility, we separate that in the specification.
Further, functions q̃pa and ẽpa are advertiser a’s expected allocation and payment functions. Before
defining these two functions, we define an important distribution that we use in our estimation. Let
Ca denote the joint distribution of auctions that advertiser a participates in. Each draw Ca from this
distribution contains the information about the distribution of bids and quality scores, the impression
characteristics (session i and exposure t), and the number of ads competing in that auction. Using
this distribution, we can now characterize the allocation function as follows:

q̃pa(ba) = ECa
[
qpi,a,t(ba, b

Ca
−a)
]
, (26)

4We believe this assumption is valid in our context, because almost all ads are mobile apps whose objective is more app
installs. This assumption may be violated in the presence of brand ads whose objective is more reach.

5Please notice that this is just a behavioral cost and the platform does not charge them for bid-changing. As shown in
Rafieian and Yoganarasimhan (2020b), the marginal effect of the expected winning probability α is 1

1−α . Hence, in a
market with many homogeneous competitors, α has a very small effect on advertisers’ equilibrium bidding strategy.
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where the expectation is taken over all the configurations Ca. This function essentially returns the
expected probability of winning by advertiser a in a random impression. Similarly, we can define
the payment function as follows:

ẽpa(ba) = ECa
[
1 (Ai,t = a;Ca) e

p
i,a,t

(
ba, b

Ca
−a; za, z

Ca
−a
)]

(27)

The term 1 (Ai,t = a;Ca) in Equation (27) shows whether ad a wins the impressions and the second
term basically computes the cost-per-click using Equation (24). Now, using the utility specification
in Equation (25), we can write the first-order condition as follows:

xa =
∂ẽpa(ba)

∂ba

(
∂q̃pa(ba)

∂ba

)−1

(28)

This equation lays out our estimation approach, as we need to empirically estimate both q̃ and ẽ
using the data at hand. In the next section, we discuss the assumptions required for identification
and overall identification strategy.

4.3.2 Assumptions and Identification

We make a series of assumptions required for our estimation task. Some of these are commonly
used in the context of auction estimation, whereas some other assumptions are more specific to the
context of quasi-proportional auction in our data. While the former is necessary for identification,
we impose the latter mostly for the ease of estimation. For robustness check, we relax those specific
assumptions and show the results will not change.

Our first assumption characterizes how advertisers make decisions regarding their own bidding
strategy:

Assumption 2. [Profit-Maximizing Advertisers] Advertisers are profit-maximizing, i.e., they choose

the bid that maximizes their profit.

In light of Assumption 2, we can treat observed bids in the data as equilibrium bids and use
Lemma 6 to estimate click valuations. As shown in Equation (25), advertisers choose their optimal
bids given their own private click valuations and their belief about other advertisers. The following
assumption characterizes other advertisers’ private click valuations:

Assumption 3. [Independent Private Values (IPV)] Advertisers’ private click valuations are

drawn independently from a distribution F (·) with a continuous density.

The assumption of Independent Private Values (IPV) is an assumption used in most auction
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settings (Guerre et al., 2000; Athey and Haile, 2007). This assumption hints a straightforward
approach to estimate both q̃ and ẽ in Equation (25), by simulating the distribution of Ca for each ad.

Now, we make assumptions more specific to the case of quasi-proportional auctions. Some of
these assumptions are necessary to use the first-order condition in Lemma 6. However, we impose
some of these assumptions to provide an analytically simpler solution. We start with the following
assumption:

Assumption 4. [Zero Impression Value] Advertisers’ valuation from an unclicked impression is

zero.

This assumption is widely used in both theoretical and empirical literature on cost-per-click
auctions (Edelman et al., 2007; Varian, 2007; Athey and Nekipelov, 2010). In our case, we believe
the value from impressions is negligible as most ads are mobile apps whose objective is to get
more app installs and can be considered as performance ads. In the next assumption, we make an
assumption about the role of budget in advertisers bidding behavior:

Assumption 5. [Budget Independent Bidding] Advertisers’ bidding behavior is independent of

their budget.

In principle the equilibrium bidding behavior may change for budget-constrained advertisers
(Borgs et al., 2007; Asadpour et al., 2014). We make this assumption in our case for two reasons.
First, we observe quite a few advertisers who have run out of budget during our study and refilled it
later. However, there is no difference in their bidding behavior. The second reason is more empirical,
as we do not observe the exact budget in our data. As such, we need to approximate this budget
which can be quite noisy.

The assumptions so far are enough to establish the identification of the distribution of click
valuations for bidders who bid above the reserve price. However, we make two additional assumption
that helps us derive a simpler analytical solution for this auction.

Assumption 6. [Separability of Allocation] We can separate the allocation function from the

payment function as follows:

ẽpa(ba) = q̃pa(ba)ECa
[
epi,a,t

(
ba, b

Ca
−a; za, z

Ca
−a
)]

Assumption 7. [Proportional Functional Form of Allocation] We can write the functional form

for the function q̃ as follows:

q̃pa(ba) =
baza

baza + ζa
, (29)
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where ζa captures the overall competition ad a faces.6

These assumptions allow us to simplify the first-order condition presented in Equation (28).
However, it is worth noting that we can actually relax both assumptions and neither of them is
crucial for identification.

For brevity, let εpa(ba) = ECa
[
epi,a,t

(
ba, b

Ca
−a; za, z

Ca
−a
)]

. It is easy to show that the function εpa is
monotonic for each advertiser a. However, we need to make the following assumption about this
function:

Assumption 8. [Twice Differentiability of Payment] The expenditure function εpa is twice differen-

tiable in ba.

Now, we can use all these assumptions and show the following lemma which is the key idea
behind our identification:

Lemma 6. If advertiser a’s equilibrium bid is greater than the reserve price (ba > b0) and the

function b2 ∂ε
p
a(b)
∂b

is increasing in the local neighbourhood around ba, her click valuation xa can be

written in terms of equilibrium bids as follows:

xa = εpa(ba) +
ba

∂εpa(b)
∂b
|b=ba

1− q̃a(ba)
(30)

Lemma 6 shows the first-order condition for the case where the advertiser’s equilibrium bid is
greater than the reserve price. We need b2 ∂ε

p
a(b)
∂b

to be increasing at ba to satisfy the second-order
condition. Intuitively, if the function e is too concave, this assumption may not hold. However, it is
a testable assumption as we can empirically test it for all the bidders.

Now, we focus on the advertisers whose bid is equal to the reserve price. For these advertisers,
we cannot use the inverse bidding equation in Equation (30), as their optimal bid could have been
lower than the reserve price, if they had been allowed to bid lower. Instead of the first-order
condition, we have other conditions for reserve price bidders. First, we know that their participation
constraint is satisfied, i.e., xa ≥ b0. Second, we know that their first-derivative at b0 is lower than or
equal to zero, as the utility must be decreasing at the truncation point. Together, we can write the
following lemma to characterize the link between the click valuation and reserve bidding behavior:

6It is worth mentioning that the functional form of the expected probability of winning is not necessarily quasi-
proportional, but it is well-approximated by a quasi-proportional functional form.
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Lemma 7. If advertiser a’s equilibrium bid is equal the reserve price (ba = b0), we can obtain

lower and upper bounds for her click valuation xa as follows:

b0 ≤ xa ≤ εpa(b0) +
b0
∂εpa(b)
∂b
|b=b0

1− q̃a(b0)
(31)

In light of Lemma 31, we cannot point-identify click valuations for the reserve bidders. However,
we can use lower and upper bounds in Equation (31). To complete our identification for the
distribution of valuations for all participating advertisers, we need one more assumption on the click
valuations of the reserve bidders:

Assumption 9. [Uniformity of Reserve Bidders’ Valuations] The click valuation xa for any reserve

price bidder is drawn from a uniform distribution with the following bounds:

xa ∼ U

(
b0, ε

p
a(b0) +

b0
∂εpa(b)
∂b
|b=b0

1− q̃a(b0)

)
(32)

With this assumption, we can now state our identification proposition:

Proposition 3. If all Assumptions 2 to 9 hold, then the distribution of advertisers’ private click

valuations are non-parametrically identified.

The proof for this part is similar to the identification proof for most auction models with
independent private values (Guerre et al., 2000; Athey and Haile, 2007). We can directly observe all
the elements in Lemma 6 and 7. Thus, we can estimate advertisers’ click valuations and form the
distribution F .

4.3.3 Estimation Method

Our estimation approach relies on the findings in §4.3.2. We first estimate the joint distribution of
configurations Ca for all ads. This involves the estimation of quality scores, distribution of observed
bids, and observed impressions. We then use this distribution to form both allocation and payment
functions, which in turn, allows us to estimate the distribution of click valuations.

Before describing the estimation procedure, we need to define a time period η at which advertis-
ers update their bids. While advertisers do not change their bid in our data, we set this time period
for two main reasons. First, advertisers can technically change their bids if they want. Therefore, it
is more reasonable to assume that they revise their decision every once in a while. Second, from
an empirical point-of-view, it allows us to capture the variance in the set of advertisers competing.
Thus, following the arguments in Rafieian and Yoganarasimhan (2020a), we set an hourly time
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period such that each η distinguish a different hour-day combination. The denote the last time
period by L.

We provide a step-by-step procedure for our estimation as follows:

• Step 1: We estimate all the quality scores za,η for all ads and time periods. We use the
proportional nature of the allocation to identify quality scores. If ads a and a′ both participate in
the auction for exposure t in session i, the denominator of their winning probability is the same.
Thus, the odds ratio of these two ads can be written as follows:

Pr(Ai,t = a)

Pr(Ai,t = a′)
=

baza
ba′za′

Since we observe their bids, we can easily estimate the ratio za
za′

by calculating the number of
impressions awarded to each ad over the set of auctions where they both have participated. Let
Iηa,a′ denote the set of impressions wherein both ads a and a′ participate in time period η. We
can write:

ẑa,η
ẑa′,η

=
ba′
∑

(i,t)∈Iη
a,a′
1(Ai,t = a)

ba
∑

(i,t)∈Iη
a,a′
1(Ai,t = a′)

(33)

As such, we can estimate all the ratios. For ad a that has participated in all the impressions, we
set ẑa,η = 1 for all time periods. This allows us to estimate all quality scores ẑa,η.

• Step 2: We empirically estimate the joint distribution Ca,η for all ads in all time periods. This
distribution contains the information about all the impressions that ad a has participated in,
number of bidders in corresponding impressions, and the joint distribution of bids and quality
scores. We call the estimated distribution Ĉa,η.
• Step 3: Given all estimated configurations Ĉa,η, we can estimate the allocation probability for

all ads over all time periods as follows:

q̂a,η(ba) =
1

Na

Na∑
(i,t)∼Ĉa,η

1(Ai,t = a), (34)

where Na is the number of draws we get from the distribution Ĉa,η. It is worth noting that we
do not need to fully estimate the allocation function as the relationship in Equation (28) only
depends on the final allocation probability given the observed bid.

• Step 4: Again, we use the distribution estimate configurations Ĉa,η to estimate our cost-per-click
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function ε̂a,η(b). For any value b, we can estimate the cost-per-click function as follows:

ε̂a,η(b) =
1

Na

Na∑
(i,t)∼Ĉa,η

inf

{
b′ |

∑
j∈Ai,j 6=a

1(b′za ≤ bjzj)− 1(bza ≤ bjzj) = 0

}
(35)

This gives us the estimate for the cost-per-click function. We can then take the numerical
derivatives of ε̂a,η(b) and estimate ε̂′a,η(b) for all values of b.

• Step 5: Using the estimates for the allocation and cost-per-click functions, we can now identify
click valuations xa,η for any combination of a and η as follows:

x̂a,η =

ε̂a,η(ba) + baε̂′a,η(ba)

1−q̂a,η(ba)
ba > b0

x0 ∼ U
(
b0, ε̂a,η(ba) + baε̂′a,η(ba)

1−q̂a,η(ba)

)
ba = b0

(36)

We also obtain single estimates for each xa without using the time periods. The procedure is the
same as what described above. We only need to use Ĉa instead of this distribution for all time
periods. We then use these estimates throughout for click valuations in our analysis.

• Step 6: Finally, we use the estimates in Equation (36) to form the distribution of click valuations.
We can write:

F̂ (x) =
1

L

L∑
η=1

1

|Aη|
∑
a∈Aη

1(xa,η ≤ x) (37)

f̂(x) =
1

L

L∑
η=1

1

|Aη|
∑
a∈Aη

1

h
K
(
x− x̂a,η

h

)
, (38)

where K is the kernel function. In this case, we use Epanechnikov kernel, i.e., K(u) =
3
4
(1− u2)1(|u| ≤ 1).

4.4 Results

We now present our results on the estimation of click valuations. We first show the main findings
on the distribution of click valuations in §4.4.1. Next, in §4.4.2, we discuss the validity of our
assumption that the distribution of click valuations is regular.

4.4.1 Estimated Distribution of Click Valuations

We first show the estimated distribution of click valuations for top ads. We only focus on the top ads,
as it is the set of ads that we use for the counterfactual evaluation of the optimal auctions. However,
we can technically recover the distribution for any set of ads. Figure 3 show the empirical CDF
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Figure 3: Estimated distribution of click valuations for top 15 ads.

and estimated density of the distribution. As shown in Figure 3a, the range between 700 to 1000
constitutes the vast majority of click valuations. Over 80% of click valuations lie in this range.

Figure 3b shows the estimated density for the distribution of click valuations. We use Epanech-
nikov kernel with bandwidth size of 75. The shape of density is similar to a bell curve with a low
variance. The mean and standard deviation for this distribution are 854.91 and 164.73 respectively.

4.4.2 On the Regularity of the Distribution of Click Valuations

Now, we use the results shown in Figure 3 and check whether the estimated distribution is regular.
As described in Assumption 1, the estimated distribution F̂ is regular if x − 1−F̂ (x)

f̂(x)
is strictly

increasing in x. Using our estimates for F̂ and f̂ , we plot the virtual valuations in Figure 4. As
demonstrated in this figure, virtual values are monotonic in click valuations.
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5 Counterfactual Evaluation of Optimal Auctions
In this section, we take our theoretical models in §3.2 and §3.3 to the data and present our approach
to evaluate the counterfactual outcomes under optimal auctions. In both cases, we need to use the
reward function that is presented Equation (16) in a generic way. More specific to our context, we
can write it as follows:

Rr
t (a;Si,t) =

(
xa −

1− Fa(xa)
fa(xa)

)
P (Yi,t | a, Si,t), (39)

Now, we want to estimate the reward function in this case, given our data. We use estimates for
both click probability at any state (i.e., P (Yi,t | a, Si,t)) as well as click valuations xa for all ads
from Rafieian (2019). We also impose symmetry assumption on the distribution of click valuations
and estimate F̂ and f̂ , based on the estimated click valuations. Given these estimates, we can now
estimate the reward function in Equation (40) and re-write it as follows:

R̂r
t (a;Si,t) =

(
x̂a −

1− F̂ (x̂a)

f̂(x̂a)

)
ŷi,t(a;Si,t) (40)

We use our estimates for the reward function in this case to obtain optimal auctions in both static
and dynamic cases and then present how we evaluate the resulting auctions.
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5.1 Solution Concept for the Optimal Static Auction

We start with the simpler case where the publisher’s objective is static. In §3.2.1 and §3.2.2, we
show how we can derive the optimal mechanism Mm(qm, em). More specifically, we show that
when F̂ is symmetric, the optimal auction will be a second-price auction with an optimal reserve
price. We can estimate the reserve price ê0 as follows:

ê0 = ĉ−1(0),

where ĉ(x) = 1−F̂ (x)

f̂(x)
and we can find ê0 by solving for ê0 = 1−F̂ (ê0)

f̂(ê0)
. Using this reserve price, we

can then derive the optimal allocation qm as follows:

qmi,a,t(x̂;Si,t) =

1 R̂r
t (a;Si,t) > maxa′∈Ai\a

(
R̂r
t (a
′;Si,t), ê0

)
0 otherwise

(41)

This allocation rule indicates that the highest reward ad (which is the ad with the highest expected
valuation) will win the impression.7 As specified in §3.2.2, the payments are determined as follows:

emi,a,t(x̂;Si,t) =

maxa′∈Ai\a

(
R̂r
t (a
′;Si,t), ê0

)
qmi,a,t(x | Si,t) = 1

0 otherwise
(42)

We can now use both Equation (41) and Equation (42) to find the optimal mechanism and apply it
to each session.8

5.2 Solution Concept for the Optimal Dynamic Auction

Now, we focus on the optimal auction with dynamic objective and show how we can use our
estimates and determine the optimal mechanism Md(qd, ed). As shown in §3.3.1, we can find the
optimal allocation by solving a Markov Decision Process that incorporates expected future rewards
as well as the current period reward. Like Rafieian (2019), we consider a finite case with and solve
for the optimal allocation using backward induction. For notational convenience, we first define the

7It is worth noting that in a case where there are multiple highest reward ads, we randomly allocate the item to one of
the highest reward ads. However, since this a very rare event in an empirical setting, for brevity, we exclude that from
Equation (41).

8It is important to notice that we can recover the distribution of click valuations specific to each session. For simplicity,
we focus on the case one global distribution for all sessions. As a robustness check, we also consider the case where
distributions are session-specific.
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function Ṽ r
t (a, Si,t) for a pair of action and state as follows:

Ṽ r
t (a, Si,t) =

(
x̂a −

1− F̂ (x̂a)

f̂(x̂a)

)
ŷi,t(a;Si,t)

+
(

1− l̂i,t(a;Si,t)
)
ŷi,t(a;Si,t)V

r
t+1 (〈Si,t, a, Yi,t = 1〉)

+
(

1− l̂i,t(a;Si,t)
)

(1− ŷi,t(a;Si,t))V
r
t+1 (〈Si,t, a, Yi,t = 0〉) ,

(43)

where ŷi,t(a;Si,t) and l̂i,t(a;Si,t) are estimated leave and click probabilities respectively. We can
use Equation (43) and describe our backward induction solution concept as follows:

1. We begin from the last period T . Since there is no expected future at that point, the value
function can be estimated as follows:

V̂ c
T (Si,T ) = max

a∈Ai
R̂r
t (a, Si,t) (44)

2. For any t < T , we can determine the value function as follows:

V̂ c
t (Si,t) = max

a∈Ai
Ṽ r
t (a, Si,T ) (45)

We can easily estimate the value function for any t < T if we have all the value functions for
the next periods. We can satisfy that by going backward and find the value function for all
states at any t and continue this process until exposure number 1.

Once we have identified the value function for all the states, we can find the optimal allocation with
dynamic objective as follows:

qdi,a,t(x̂;Si,t) =


1 a = argmaxa∈Ai Ṽ

r
t (a, Si,t), t < T

1 a = argmaxa∈Ai R̂
r
t (a, Si,t), t = T

0 otherwise

(46)

Now, given the allocation, we can determine the payments using Equation (15). It is important to
notice that the payment is determined in expectation over the entire session for each ad. For any
ad a, the first component in Equation (15) is the average value ad a would get given the allocation,
and the second component is the integral of the expected value ad a would get if she reduces her
bid, taken over all possible bids that she could submit. The first component is easier to calculate
as it is an expected sum of the total value each ad receives given each sequence. The second part,
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however, is more computationally intensive as it involves a numerical integration. To do that, we
first need to estimate the function inside the integral. Let Q̂i,a(ba;Si,1) denote the expectation inside
the integral in Equation (15). This will be the expected number of clicks ad a would get for any bid,
given other players report their click valuations. We interpolate this function by finding its values
for a set of points on the interval [

¯
xa, xa]. Since the maximum number of expected number of clicks

an ad could get is 6 when T = 6, we split this interval into 6 equally length intervals and find the
function values for the points splitting the interval. We operationalize that with ha =

x̂a−ˆ
¯
xa

T
, that

indicates the length of each interval for ad a. As such, if ba ∈ (ˆ
¯
xa + (i− 1)ha, ˆ

¯
xa + iha], we can

estimate this function as follows:

Q̂i,a(ba, x̂−a;Si,1) =
T∑
t=1

∑
gt∈GT

qdi,a,t(x̂a + iha, x̂−a;Si,t)P (gt | τ, π), (47)

where gt contains the states and ads prior to period t. In Equation (47), we approximate the
function E

[∑∞
t=1 β

t−1P (Yi,t | a, Si,t)qMi,a,t(ba, x−a;Si,t)
]

with a step function, which makes the
integral computation significantly easier. Now, we can determine the payments as follows:

edi,a(x;Si,1) =
T∑
t=1

∑
gt∈GT

x̂aŷi,t(a;Si,t)q
d
i,a,t(x;Si,t)P (gt | τ, π)

− ha
T∑
t=1

Q̂i,a(x̂a + tha, x̂−a;Si,1),

(48)

where the first component is the total value ad a receives from the session given the allocation, and
the second component is the estimate of advertiser’s surplus.

5.3 Evaluation

To evaluate the performance of each auction, we implement the direct method with the reward
function with the revenue-maximizing objective. As such, we can define the expected revenue from
session i with the horizon length T as ρrT (M ;Si,1) for any mechanism M as follows:

ρT (M ;Si,1) = Egt∼(τ,M)

[
T∑
t=1

βt−1rrt

]
, (49)

where the sequence gt is determined by the joint distribution of transitions τ , and the allocation rule
in mechanism M . Further, rrt denotes the reward function with the revenue-maximizing objective
for the pair of state and action shown in the corresponding gt. We can use our estimates for the
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distribution of transitions and evaluate ρT (M ;Si,1) for any mechanism M as follows:

ρ̂T (M ;Si,1) =
T∑
t=1

∑
gt∈GT

∑
a∈Ai

qMi,a,t(x̂;Si,t)R̂
r
t (a;Si,t)P (gt | τ,M) (50)

This gives us the expected revenue that the publisher can extract from session i in the first T periods,
when using the mechanism M .

6 Results

6.1 Gains from the Optimal Dynamic Auction

We start by presenting different session-level outcomes under both dynamic and static optimal
auctions as well as the actual outcomes under the current auction – quasi-proportional auction. We
evaluate the counterfactual outcomes under optimal auctions using our approach in §5. The sample
of sessions that we use is the same as the one in Rafieian (2019). In our evaluation, we only focus
on the first six exposures in any session, as we set T = 6 as the length of the horizon. We present
our results in Table 2.

As expected, both optimal auctions generate substantial gains over the current auction in terms
of all session-level outcomes, except the expected advertisers’ surplus. Three key components of
the current auction explain its performance relative to the optimal auctions. First, as discussed
before, advertisers bid roughly half of their click valuation in this auction, lowering the revenues the
publisher is able to extract. This, in turn, explains higher advertisers’ surplus in the current auction
as advertisers can extract huge informational rent by bidding half of their valuations. Second,
the allocation mechanism is probabilistic in the current auction, which enables advertisers with
low valuations to win impressions and clicks. This significantly reduces the efficiency or total
surplus generated in the current auction compared to optimal auctions. Finally, as mentioned before,
the ad-network does not incorporate sophisticated customization tools to show more relevant ads
to users. This also greatly contributes to the gap between the current auction and other optimal
auctions.

Next, we focus on our main goal in this paper, and compare the session-level outcomes under
dynamic and static optimal auctions. We find that using an optimal dynamic auction leads to 1.60%
increase in the expected revenue per session, compared to the optimal static auction. This is of
particular importance to the publishers and ad-networks as they usually use optimal static auctions
(e.g., second-price auction).

While revenue is the main outcome most publishers and ad-networks care about, they do not
usually want to achieve better revenue outcomes at the expense of efficiency and advertisers’ surplus.
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Auctions

Dynamic Static Current

Expected Publisher’s Revenue Per Session 126.49 124.49 31.63
Expected Total Surplus Per Session 143.45 140.96 66.60
Expected Advertisers’ Surplus Per Session 16.96 16.47 34.97
Expected No. of Clicks Per Session 0.1577 0.1549 0.0823
Expected Session Length 3.24 3.25 3.12
Expected CTR 4.86% 4.76% 2.64%

No. of Users 1000 1000 1000
No. of Sessions 12,136 12,136 12,136

Table 2: Market outcomes under different auctions for a sequence size of 6

Our results show that the optimal dynamic auction yields higher total and advertisers’ surplus than
the optimal static auction: the expected total surplus and advertisers’ surplus grow by 1.77% and
3.00% respectively. Thus, advertisers also benefit from the revenue-optimal dynamic auction, as
compared to the revenue-optimal static auction. Finally, we focus on the user-level outcomes –
expected number of clicks per session and the session length. While the difference in the session
length is very small, we find 1.83% increase in the expected number of clicks. This finding is in line
with the findings in Rafieian (2019). More importantly, it suggest that the revenue gains from the
optimal dynamic auction likely come from the improvement in the match between ads and users,
and not from the greater ability to extract informational rent from advertisers.

6.2 Distribution of Advertisers’ Surplus

Our results in Table 2 indicate that the average advertisers’ surplus increases by 3.00% in the
optimal dynamic auction, as compared to the optimal static auction. We now explore how this
surplus is distributed across advertisers. We use two main approaches to examine the distribution
of advertisers’ surplus: (1) number of advertisers who benefit from the optimal dynamic auction
compared to the optimal static auction, and (2) the Herfindahl-Hirschman Index (HHI) which is a
well-known measure to study market concentration.

We first focus on the distribution of advertisers’ surplus under both auctions. We compute the
log of each advertiser’s surplus over all 12,136 sessions and present it in Figure 5. Interestingly,
we find that only 3 out of 15 advertisers benefit from the optimal dynamic auction compared to the
one with the optimal static auction. In contrast, 9 out of 15 advertisers prefer the optimal static
auction. However, it is worth noting that these advertisers have a very small surplus in both cases
and their gains are small in magnitude. Therefore, the average advertisers’ surplus is higher under
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Figure 5: Log advertiser surplus under auctions with both dynamic and static objectives. The values
are computed over all 12,136 session.

the optimal dynamic auction.
Next, we focus on the concentration of advertiser surplus in the market and calculate the

Herfindahl-Hirschman Index (HHI) under both auctions. While more advertisers prefer the optimal
static auction, the concentration in the optimal dynamic auction is lower: the Herfindahl-Hirschman
Index (HHI) for the optimal dynamic auction is 0.5285, whereas it is 0.5398 for the optimal static
auction. Although both auctions seem quite concentrated as they both allocate most impressions
to one ad, optimal dynamic auction achieves a lower concentration by allocating more to the
second-largest ad, thereby closing the gap between the two largest advertisers.

7 Conclusion
Mobile in-app advertising has grown exponentially over the last years. One important reason
contributing to this growth is the publishers’ ability to make adaptive interventions – using the
time-varying information about the users within the session to personalize ad interventions for these
users. Rafieian (2019) focuses on the match between ads and users as the main outcome of interest
and shows that dynamic sequencing of ads improves the match outcome per session, compared
static sequencing of ads. While dynamic sequencing of ads leads to improvements in the match
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outcome, it is not clear whether it can be linked to higher revenues, as advertisers can change their
bids in response to the change in the allocation. In this paper, we investigate the revenue gains from
adopting a dynamic sequencing framework in a competitive environment, as opposed to a static
sequencing framework. We propose a unified framework that contains two key components: (1) a
theoretical framework that solves for the revenue-optimal auction with the dynamic objective, and
(2) an empirical framework that estimates the counterfactual market outcomes under this auction.
Our empirical framework comprises of structural estimation of advertisers’ private valuations as
well as personalized estimation of the click outcome given any pair of user-ad using machine
learning methods. We apply our framework to large-scale data from the leading in-app ad-network
of an Asian country. We demonstrate that adopting a dynamic sequencing framework increases
the expected revenue by 1.60% compared to the static sequencing framework. We then show that
the improved match outcome is the key factor in achieving these gains. Further, we explore other
outcomes such as the total surplus (efficiency) and advertisers’ surplus and document gains from
the dynamic framework over the static framework. Thus, our optimal dynamic auction leads to
improvement in all primary market outcomes.

Our paper makes three key contributions to the literature. First, from a methodological stand-
point, we present a unified dynamic framework that incorporates both advertisers’ and users’ behav-
ior and examines the market outcomes under the optimal dynamic auction. To our knowledge, this
is the first paper to empirically study the revenue gains from adopting an optimal dynamic auction.
Second, we propose a methodological framework for structural estimation of quasi-proportional
auction. Our framework adds to the literature on the non-parametric estimation of auctions and
can easily be extended to any auction that employs a randomized allocation rule. Finally, from
a substantive viewpoint, we show that dynamic sequencing of ads can lead to considerable gains
in the publisher’s revenue, over the existing auctions. This is particularly important, because the
current practice in marketing ignores the gains from using a dynamic framework.

Our findings in this paper have several implications for marketing practitioners. First, we propose
a framework that helps publishers evaluate market outcomes under counterfactual auctions. Second,
our substantive finding shows that adopting an optimal dynamic auction results in considerable
gains in terms of three key market outcomes – revenue, total surplus, and advertisers’ surplus. Thus,
we expect this finding to inform the publishers’ decision as to whether use an optimal dynamic
auction. Further, we highlight that adaptive interventions require more careful consideration of
players’ incentives, when there are strategic players whose actions can affect market outcomes.
Thus, our framework has implications for the practitioners and policy makers that increasingly use
adaptive interventions in the presence of strategic players.
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Nevertheless, there remains some limitations in our study that serve as excellent avenues for
future research. First, our optimal dynamic auction involves a bit complex allocation and payment
rules. As a result, it may be possible that advertisers will not behave in the expected way. Finding
auctions with easier rules that achieve approximately the same outcomes would be an interesting
avenue for future study. Second, our structural estimation framework assumes that advertisers are
risk-neutral and aware of how their bid affects their probability of winning. However, advertisers’
behavior would be different if they are risk-averse. Future research can study risk aversion in
probabilistic auctions and empirically identify the risk elements in advertisers’ utility function.
Finally, while our paper provides counterfactual estimates optimal auctions, we do not run these
auctions in the field. An interesting future research is to test these auction in a field setting and
examine market outcomes.
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Appendices
A Proofs
Proof of Lemma 1. In a mechanism M , we can write the maximum utility advertiser a can receive as
follows:

max
ba

uMi,a,t(ba;xa, Si,t) = max
ba
Ex−a

[
wi,a,t(xa;Si,t)q

M
i,a,t(ba, x−a;Si,t)− eMi,a,t(ba, x−a;Si,t)

]
, (51)

where the expectation is over other advertisers’ click valuations, as we have IC. The first derivative of
advertiser a with respect to her click valuation xa as follows:

∂uMi,a,t(ba;xa, Si,t)

∂xa
= Ex−a

[
P (Yi,a | a, Si,t)qMi,a,t(ba, x−a;Si,t)

]
(52)

Given IC constraint, we know that uMi,a,t(xa;xa, Si,t) = maxba u
M
i,a,t(ba;xa, Si,t). Therefore, based on

envelope theorem, we have:

∂uMi,a,t(ba;xa, Si,t)

∂xa
|ba=xa= Ex−a

[
P (Yi,a | a, Si,t)qMi,a,t(x;Si,t)

]
(53)

Now, since u is differentiable, we can write:

uMi,a,t(xa;xa, Si,t)− uMi,a,t(x′a;x′a, Si,t) =

∫ xa

x′a

∂uMi,a,t(ba;xa, Si,t)

∂xa
dba

= P (Yi,a | a, Si,t)
∫ xa

x′a

Ex−a
[
qMi,a,t(ba, x−a;Si,t)

]
dba

(54)

This directly implies Equation (5) and completes the proof for Lemma 1.

Proof of Lemma 2. We can write the publisher’s revenues as follows:

Ex

∑
a∈Ai

eMi,a,t(x;Si,t)

 =
∑
a∈Ai

Ex

[
wi,a,t(xa;Si,t)q

M
i,a,t(x;Si,t)

]
−
∑
a∈Ai

Ex

[
wi,a,t(xa;Si,t)q

M
i,a,t(x;Si,t)− eMi,a,t(x;Si,t)

]
,

(55)

where each component of the second term is advertiser a’s surplus and allows us to write it as follows:

Ex

∑
a∈Ai

eMi,a,t(x;Si,t)

 =
∑
a∈Ai

Ex

[
wi,a,t(xa;Si,t)q

M
i,a,t(x;Si,t)

]
−
∑
a∈Ai

Exa

[
uMi,a,t(xa;xa, Si,t)

]
(56)

Using calculus theorems and Lemma 1, we can transform each element of the second term. For brevity and
with slight abuse of notation, we drop Si,t from the function specification, and define pi,a = P (Yi,a | a, Si,t).
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We can write:

Exa

[
uMi,a,t(xa;xa)

]
=

∫ x̄a

¯
xa

uMi,a,t(xa)fa(xa)dxa

=

∫ x̄a

¯
xa

(
uMi,a,t(¯

xa;
¯
xa) + pi,a

∫ xa

¯
xa

Ex−a
[
qMi,a,t(ba, x−a)

]
dba

)
fa(xa)dxa

= uMi,a,t(¯
xa;

¯
xa) + pi,a

∫ x̄a

¯
xa

∫ xa

¯
xa

Ex−a
[
qMi,a,t(ba, x−a)

]
fa(xa)dbadxa

= uMi,a,t(¯
xa;

¯
xa) + pi,a

∫ x̄a

¯
xa

∫ x̄a

ba

fa(xa)Ex−a
[
qMi,a,t(ba, x−a)

]
dxadba

= uMi,a,t(¯
xa;

¯
xa) + pi,a

∫ x̄a

¯
xa

(1− Fa(ba))Ex−a
[
qMi,a,t(ba, x−a)

]
dba

= uMi,a,t(¯
xa;

¯
xa) + pi,a

∫ x̄a

¯
xa

(1− Fa(ba))
∫
x−a

qMi,a,t(ba, x−a)f−a(x−a)dx−adba

= uMi,a,t(¯
xa;

¯
xa) + pi,a

∫ x̄a

¯
xa

1− Fa(ba)
fa(ba)

∫
x−a

qMi,a,t(ba, x−a)f−a(x−a)dx−afa(ba)dba

= uMi,a,t(¯
xa;

¯
xa) + pi,a

∫
x

1− Fa(ba)
fa(ba)

qMi,a,t(ba, x−a)f(ba, x−a)dx−adba

= uMi,a,t(¯
xa;

¯
xa) + pi,a

∫
x

1− Fa(xa)
fa(xa)

qMi,a,t(x)f(x)dx

= uMi,a,t(¯
xa;

¯
xa) + pi,aEx

[
1− Fa(xa)
fa(xa)

qMi,a,t(x)

]
(57)

Now we can transform the publisher’s revenues in Equation (56) using Equation (57) to complete the proof:

Ex

∑
a∈Ai

eMi,a,t(x;Si,t)

 =
∑
a∈Ai

Ex

[
wi,a,t(xa;Si,t)q

M
i,a,t(x;Si,t)

]
−
∑
a∈Ai

uMi,a,t(¯
xa;

¯
xa)−

∑
a∈Ai

pi,aEx

[
1− Fa(xa)
fa(xa)

qMi,a,t(x)

]

= Ex

∑
a∈Ai

(
xa −

1− Fa(xa)
fa(xa)

)
pi,aq

M
i,a,t(x;Si,t)

−∑
a∈Ai

uMi,a,t(¯
xa;

¯
xa, Si,t)

Proof of Proposition 1. Given the payments in Equation (8), it is easy to check that uMi,a,t(¯
xa;

¯
xa, Si,t) = 0.
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We can write:

uMi,a,t(¯
xa;

¯
xa, Si,t) = Ex−a

[
wi,a,t(

¯
xa;Si,t)q

M
i,a,t(¯

xa, x−a;Si,t)− eMi,a,t(¯xa, x−a;Si,t)
]

= Ex−a

[
P (Yi,t | a, Si,t)

∫
¯
xa

¯
xa

qMi,a,t(ba, x−a;Si,t)dba

]
= 0

(58)

This implies that the second part of the publisher’s revenues in Equation (6) is zero, i.e.,
∑

a∈Ai u
M
i,a,t(¯

xa;
¯
xa, Si,t) =

0. Thus, since the q is chosen to maximize the first part of Equation (6) given some constraints, we know that
mechanism M is optimal given those constraint. It is now sufficient to show the following two statements: 1)
mechanism M is a direct revelation mechanism, and 2) any direct mechanism satisfies the constraints: q is
plausible and Ex−a

[
qMi,a,t(xa, x−a;Si,t)

]
is increasing in xa.

We start by showing that M is a direct revelation mechanism. The plausibility is satisfied by definition.
We only need to show both IR and IC. Given the payment function, we can write the utility function for
advertiser a as follows:

uMi,a,t(xa;xa, Si,t) = Ex−a

[
wi,a,t(xa;Si,t)q

M
i,a,t(x;Si,t)− eMi,a,t(x;Si,t)

]
= Ex−a

[
P (Yi,t | a, Si,t)

∫ xa

¯
xa

qMi,a,t(ba, x−a;Si,t)dba

]

= P (Yi,t | a, Si,t)
∫ xa

¯
xa

Ex−a

[
qMi,a,t(ba, x−a;Si,t)

]
dba

(59)

Given uMi,a,t(¯
xa;

¯
xa, Si,t) = 0, this is equivalent to the envelope condition. Since the integral on the RHS is

always non-negative, ui,a,t is increasing, which combined with uMi,a,t(¯
xa;

¯
xa, Si,t) = 0 imply IR constraint.

We now need to show IC constraint is also satisfied. We prove that by contradiction. Suppose that there is an
x′a that gives a higher utility to advertiser a than truthful reporting, given everyone else bidding their true
click valuations. Let γ denote the gains advertiser a receives by reporting x′a instead of xa. We can write:

γ = uMi,a,t(x
′
a;xa, Si,t)− uMi,a,t(xa;xa, Si,t)

= uMi,a,t(x
′
a;x
′
a, Si,t)−

(
uMi,a,t(x

′
a;x
′
a, Si,t)− uMi,a,t(x′a;xa, Si,t)

)
− uMi,a,t(xa;xa, Si,t)

= uMi,a,t(x
′
a;x
′
a, Si,t)− uMi,a,t(xa;xa, Si,t)− (x′a − xa)P (Yi,t | a, Si,t)Ex−a

[
qMi,a,t(x

′
a, x−a;Si,t)

]
= P (Yi,t | a, Si,t)

(∫ x′a

xa

Ex−a

[
qMi,a,t(ba, x−a;Si,t)

]
dba − (x′a − xa)Ex−a

[
qMi,a,t(x

′
a, x−a;Si,t)

])

= P (Yi,t | a, Si,t)
∫ x′a

xa

Ex−a

[
qMi,a,t(ba, x−a;Si,t)− qMi,a,t(x′a, x−a;Si,t)

]
dba

(60)

Now, given that Ex−a
[
qMi,a,t(xa, x−a;Si,t)

]
is increasing in xa, it is easy to check γ ≤ 0 regardless of

whether x′a > xa or not. This completes the proof of part 1: mechanism M is a direct revelation mechanism.
Now, we show the second part: any direct revelation mechanism satisfies the constraints: q is plausible

and Ex−a
[
qMi,a,t(xa, x−a;Si,t)

]
is increasing in xa. A direct revelation mechanism M satisfies IC constraints.
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Hence, for x′a > xa we can write:

uMi,a,t(xa;xa, Si,t) ≥ uMi,a,t(x′a;xa, Si,t) (61)

uMi,a,t(x
′
a;x
′
a, Si,t) ≥ uMi,a,t(xa;x′a, Si,t) (62)

Subtracting these two equations, we have:

uMi,a,t(xa;xa, Si,t)− uMi,a,t(xa;x′a, Si,t) ≥ uMi,a,t(x′a;xa, Si,t)− uMi,a,t(x′a;x′a, Si,t) (63)

Simplifying Equation (73) gives us:

(x′a − xa)
(
Ex−a

[
qMi,a,t(x

′
a, x−a;Si,t)

]
− Ex−a

[
qMi,a,t(xa, x−a;Si,t)

])
≥ 0 (64)

Since x′a > xa, we can show that Ex−a
[
qMi,a,t(xa, x−a;Si,t)

]
is increasing in xa. This completes the proof

for the second part.

Proof of Lemma 3. The proof for this lemma is almost identical to the proof for Lemma 1. We start by
writing down the maximization problem advertiser a faces in mechanism M :

max
ba

UMi,a(ba;xa, Si) = max
ba
E

[ ∞∑
t=1

βt−1
(
wi,a,t(xa;Si,t)q

M
i,a,t(ba, x−a;Si,t)− eMi,a,t(ba, x−a;Si,t)

)]
,

(65)
where the expectation is over other advertisers’ click valuations as well as the stochasticity induce by the
dynamic process. The reason we take the expectation over other advertisers’ click valuation is the main
condition in the lemma: IC constraint. We can write the first derivative of advertiser a with respect to her
click valuation xa as follows:

∂UMi,a(ba;xa, Si)

∂xa
= E

[ ∞∑
t=1

βt−1P (Yi,t | a, Si,t)qMi,a,t(ba, x−a;Si,t)

]
, (66)

where, again, the expectation is over other advertisers’ click valuations as well as the stochasticity induce
by the dynamic process. IC constraint implies that UMi,a(xa;xa, Si) = maxba U

M
i,a(ba;xa, Si). We can now

apply the envelope theorem as follows:

∂uMi,a,t(ba;xa, Si,t)

∂xa
|ba=xa= E

[ ∞∑
t=1

βt−1P (Yi,t | a, Si,t)qMi,a,t(ba, x−a;Si,t)

]
(67)

Now, due to the first-differentiability of U , we have:

UMi,a(xa;xa, Si)− UMi,a(x′a;x
′
a, Si,t) =

∫ xa

x′a

∂UMi,a(ba;xa, Si)

∂xa
dba

=

∫ xa

x′a

E

[ ∞∑
t=1

βt−1P (Yi,t | a, Si,t)qMi,a,t(ba, x−a;Si,t)

]
dba,

(68)

which is equivalent to Equation (12) and completes the proof for Lemma 3.
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Proof of Lemma 4. The steps for this proof is almost identical to the proof for Lemma 2. We start by writing
the publisher’s objective function:

E

∑
a∈Ai

eMi,a(x;Si)

 =
∑
a∈Ai

Ex

[ ∞∑
t=1

βt−1wi,a,t(xa;Si,t)q
M
i,a,t(x;Si,t)

]
∑
a∈Ai

Ex

[ ∞∑
t=1

βt−1wi,a,t(xa;Si,t)q
M
i,a,t(x;Si,t)− eMi,a(x;Si)

]

=
∑
a∈Ai

Ex

[ ∞∑
t=1

βt−1wi,a,t(xa;Si,t)q
M
i,a,t(x;Si,t)

]
−
∑
a∈Ai

Exa

[
UMi,a(xa;xa, Si)

]
,

(69)

where all the expectations are over the specified click valuations and the stochasticity induced by the dynamic
process. Now, we can transform each element of the second term. For brevity and with slight abuse of
notation, we drop Si and Si,t from the function specification, and define pi,a,t = P (Yi,a | a, Si,t). We can
write:

Exa

[
UMi,a(xa;xa)

]
=

∫ x̄a

¯
xa

UMi,a(xa)fa(xa)dxa

=

∫ x̄a

¯
xa

(
UMi,a(

¯
xa;

¯
xa) +

∫ xa

¯
xa

Ex−a

[ ∞∑
t=1

βt−1pi,a,tq
M
i,a,t(ba, x−a)

]
dba

)
fa(xa)dxa

= UMi,a(
¯
xa;

¯
xa) +

∫ x̄a

¯
xa

∫ xa

¯
xa

Ex−a

[ ∞∑
t=1

βt−1pi,a,tq
M
i,a,t(ba, x−a)

]
fa(xa)dbadxa

= UMi,a(
¯
xa;

¯
xa) +

∫ x̄a

¯
xa

∫ x̄a

ba

fa(xa)Ex−a

[ ∞∑
t=1

βt−1pi,a,tq
M
i,a,t(ba, x−a)

]
dxadba

= UMi,a(
¯
xa;

¯
xa) +

∫ x̄a

¯
xa

(1− Fa(ba))Ex−a

[ ∞∑
t=1

βt−1pi,a,tq
M
i,a,t(ba, x−a)

]
dba

= UMi,a(
¯
xa;

¯
xa) + pi,a

∫ x̄a

¯
xa

(1− Fa(ba))
∫
x−a

∞∑
t=1

βt−1pi,a,tq
M
i,a,t(ba, x−a)f−a(x−a)dx−adba

= UMi,a(
¯
xa;

¯
xa) +

∫ x̄a

¯
xa

1− Fa(ba)
fa(ba)

∫
x−a

∞∑
t=1

βt−1pi,a,tq
M
i,a,t(ba, x−a)f−a(x−a)dx−afa(ba)dba

= UMi,a(
¯
xa;

¯
xa) +

∫
x

1− Fa(ba)
fa(ba)

∞∑
t=1

βt−1pi,a,tq
M
i,a,t(ba, x−a)f(ba, x−a)dx−adba

= UMi,a(
¯
xa;

¯
xa) +

∫
x

1− Fa(xa)
fa(xa)

∞∑
t=1

βt−1pi,a,tq
M
i,a,t(x)f(x)dx

= UMi,a(
¯
xa;

¯
xa) + pi,aEx

[
1− Fa(xa)
fa(xa)

∞∑
t=1

βt−1pi,a,tq
M
i,a,t(x)

]
(70)
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Now we can re-write Equation (69) using Equation (70) to complete the proof:

Ex

∑
a∈Ai

eMi,a(x;Si)

 =
∑
a∈Ai

Ex

[ ∞∑
t=1

βt−1wi,a,t(xa;Si,t)q
M
i,a,t(x;Si,t)

]

−
∑
a∈Ai

UMi,a(
¯
xa;

¯
xa)−

∑
a∈Ai

Ex

[
1− Fa(xa)
fa(xa)

∞∑
t=1

βt−1pi,a,tq
M
i,a,t(x)

]

= Ex

∑
a∈Ai

∞∑
t=1

βt−1

(
xa −

1− Fa(xa)
fa(xa)

)
pi,a,tq

M
i,a,t(x;Si,t)


−
∑
a∈Ai

UMi,a(
¯
xa;

¯
xa, Si)

=
∑
a∈Ai

Ex

[ ∞∑
t=1

βt−1

(
xa −

1− Fa(xa)
fa(xa)

)
pi,a,tq

M
i,a,t(x;Si,t)

]
−
∑
a∈Ai

UMi,a(
¯
xa;

¯
xa, Si)

Proof of Proposition 2. The proof for this proposition is very similar to the one for Proposition 1. We begin
by providing the necessary and sufficient conditions for the IC constraint. We first show that a mechanism M

is IC if and only if Ex−a
[∑∞

t=1 β
t−1P (Yi,t | a, Si,t)qMi,a,t(xa, x−a;Si,t)

]
is increasing in xa and we have the

envelope condition as presented in Equation (12).
We start our proof by the only if part. We want to show that if the mechanism M is IC, then

Ex−a
[∑∞

t=1 β
t−1P (Yi,t | a, Si,t)qMi,a,t(xa, x−a;Si,t)

]
is increasing in xa and we have the envelope con-

dition as presented in Equation (12). The latter is the result of Lemma 3. So we only need to show the that IC
implies monotonicity. Given the IC, for any x′a > xa we can write:

UMi,a(xa;xa, Si) ≥ UMi,a(x′a;xa, Si) (71)

UMi,a(x′a;x
′
a, Si) ≥ UMi,a(xa;x

′
a, Si) (72)

Subtracting these two equations, we have:

UMi,a(xa;xa, Si)− UMi,a(xa;x
′
a, Si) ≥ UMi,a(x′a;xa, Si)− UMi,a(x′a;x

′
a, Si) (73)

Simplifying Equation (73) gives us:

(x′a − xa)

(
Ex−a

[ ∞∑
t=1

βt−1P (Yi,t | a, Si,t)qMi,a,t(xa, x−a;Si,t)

])
≥ 0 (74)

Since x′a > xa, we can show that Ex−a
[∑∞

t=1 β
t−1P (Yi,t | a, Si,t)qMi,a,t(xa, x−a;Si,t)

]
is increasing in xa.

This completes the only if part of the statement.
Now, we show the if part of the statement. If we have plausibility and monotonicity conditions as above,
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then we IC constraint is satisfied. We assume that the IC is not satisfied and then show contradiction. If IC is
not satisfied, there exists an x′a that gives a higher utility to advertiser a than truthful reporting, given IC for
other advertisers. We denote the gains from deviating by γ. We can write:

γ = UMi,a(x′a;xa, Si)− UMi,a(xa;xa, Si)

= UMi,a(x′a;x
′
a, Si)−

(
UMi,a(x′a;x

′
a, Si)− UMi,a(x′a;xa, Si)

)
− UMi,a(xa;xa, Si)

= UMi,a(x′a;x
′
a, Si)− UMi,a(xa;xa, Si)

− (x′a − xa)Ex−a

[ ∞∑
t=1

βt−1P (Yi,t | a, Si,t)qMi,a,t(x′a, x−a;Si,t)

]

=

∫ x′a

xa

E

[ ∞∑
t=1

βt−1P (Yi,t | a, Si,t)qMi,a,t(ba, x−a;Si,t)

]
dba

− (x′a − xa)Ex−a

[ ∞∑
t=1

βt−1P (Yi,t | a, Si,t)qMi,a,t(x′a, x−a;Si,t)

]

=

∫ x′a

xa

Ex−a

[ ∞∑
t=1

βt−1P (Yi,t | a, Si,t)qMi,a,t(ba, x−a;Si,t)

−
∞∑
t=1

βt−1P (Yi,t | a, Si,t)qMi,a,t(x′a, x−a;Si,t)

]
dba

(75)

Now, given that Ex−a
[∑∞

t=1 β
t−1P (Yi,t | a, Si,t)qMi,a,t(xa, x−a;Si,t)

]
is increasing in xa, it is easy to check

γ ≤ 0 independent of the relationship between x′a and xa. This contradicts the assumption that γ > 0 and
shows that mechanism M is IC.

Now we show that the proposed mechanism is optimal. This mechanism maximizes the first component
in Equation (13) subject to the plausibility and monotonicity conditions, while setting the payment such that
the second component is zero. Given the payments, we can write:

UMi,a(xa;xa, Si) = E

[ ∞∑
t=1

βt−1
(
wi,a,t(xa;Si,t)q

M
i,a,t(xa, x−a;Si,t)− eMi,a,t(xa, x−a;Si,t)

)]

=

∫ xa

¯
xa

Ex−a

[ ∞∑
t=1

βt−1P (Yi,t | a, Si,t)qMi,a,t(ba, x−a;Si,t)

]
dba

(76)

Equation Equation (76) shows that UMi,a(
¯
xa;

¯
xa, Si) = 0 for all a, which implies that we have the envelope

condition as in Equation (12). Together, these imply IR constraint. Further, the envelope condition and the
monotonicity constraint are equivalent to the IC constraint. Therefore, IC is also satisfied in our case.

Now we only need to show the optimality of the mechanism M . Since
∑

a∈Ai U
M
i,a(

¯
xa;

¯
xa, Si) = 0, the

choice of q maximizes the publisher’s objective given the plausibility and monotonicity constraint. Since
these two constraints are necessary for any direct revelation mechanism, the mechanism M is optimal.

This equivalence proves two statements: 1) IC is satisfied, and 2) any direct revelation mechanism must
satisfy monotonicity and plausibility.

Proof of Lemma 5. We only need to show that Ex−a
[∑∞

t=1 β
t−1P (Yi,t | a, Si,t)qMi,a,t(xa, x−a;Si,t)

]
in-
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creasing in xa. Let qM and qM
′

denote the optimal allocation functions derived by Equation (17) and
Equation (18) for click valuation profiles x and x′ respectively. Since these mechanisms are optimal for
corresponding cases, we can write the following two inequalities:

E

 ∞∑
t=1

βt−1

∑
a∈Ai

(
xa −

1− Fa(xa)
fa(xa)

)
P (Yi,t | a, Si,t)qMi,a,t(xa;Si,t)


≥ E

 ∞∑
t=1

βt−1

∑
a∈Ai

(
xa −

1− Fa(xa)
fa(xa)

)
P (Yi,t | a, Si,t)qM

′
i,a,t(x

′
a;Si,t)

 ,
(77)

and

E

 ∞∑
t=1

βt−1

∑
a∈Ai

(
x′a −

1− Fa(x′a)
fa(x′a)

)
P (Yi,t | a, Si,t)qM

′
i,a,t(x

′
a;Si,t)


≥ E

 ∞∑
t=1

βt−1

∑
a∈Ai

(
x′a −

1− Fa(x′a)
fa(x′a)

)
P (Yi,t | a, Si,t)qMi,a,t(xa;Si,t)

 (78)

Subtracting these two inequalities will give us the following inequality:

E

 ∞∑
t=1

βt−1

∑
a∈Ai

(
xa −

1− Fa(xa)
fa(xa)

− x′a +
1− Fa(x′a)
fa(x′a)

)
P (Yi,t | a, Si,t)qMi,a,t(xa;Si,t)


≥ E

 ∞∑
t=1

βt−1

∑
a∈Ai

(
xa −

1− Fa(xa)
fa(xa)

− x′a +
1− Fa(x′a)
fa(x′a)

)
P (Yi,t | a, Si,t)qM

′
i,a,t(x

′
a;Si,t)


(79)

Now, suppose that x and x′ are the same at each element except the a-th element, i.e., xa 6= x′a and xj = x′j
for all j 6= a. Further, suppose that xa > x′a. We can then write:

E

[ ∞∑
t=1

βt−1

(
xa −

1− Fa(xa)
fa(xa)

− x′a +
1− Fa(x′a)
fa(x′a)

)
P (Yi,t | a, Si,t)qMi,a,t(xa;Si,t)

]

≥ E

[ ∞∑
t=1

βt−1

(
xa −

1− Fa(xa)
fa(xa)

− x′a +
1− Fa(x′a)
fa(x′a)

)
P (Yi,t | a, Si,t)qM

′
i,a,t(x

′
a;Si,t)

] (80)

Now, since the distribution Fa is regular, we have:

E

[ ∞∑
t=1

βt−1P (Yi,t | a, Si,t)qMi,a,t(xa;Si,t)

]
≥ E

[ ∞∑
t=1

βt−1P (Yi,t | a, Si,t)qM
′

i,a,t(x
′
a;Si,t)

]
(81)

The last inequality directly implies Ex−a
[∑∞

t=1 β
t−1P (Yi,t | a, Si,t)qMi,a,t(xa, x−a;Si,t)

]
increasing in xa

and completes the proof.
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Proof of Lemma 6. To write the FOC, we first need to take the first derivative of the expected utility function
for ad a. We can write:

∂upa(ba;xa)

∂ba
=

∂

∂ba

(
xaq̃

p
a(ba)− ẽpa(ba)

)
ma

=
∂

∂ba

(
xa − εpa(ba)

)
q̃pa(ba)ma

=

(
xa
∂q̃pa(ba)

∂ba
− εpa(ba)

∂q̃pa(ba)

∂ba
− q̃pa(ba)

∂εpa(ba)

∂ba

)
ma,

(82)

where the second line comes from Assumption 6. We now use Assumption 7 and derive the following
relationship for the first derivative of the allocation function:

q̃pa(ba)
∂q̃pa(ba)
∂ba

=

baza
baza+ζa
zaζa

(baza+ζa)2

=
ba(baza + ζa)

ζa
=

ba
1− q̃pa(ba)

(83)

Now, we need to have ∂upa(ba;xa)
∂ba

= 0 for the equilibrium bid ba. Using Equation (82), we can write the FOC
as follows:

xa = εpa(ba) +

∂εpa(ba)
∂ba

q̃pa(ba)

∂q̃pa(ba)
∂ba

= εpa(ba) +

∂εpa(ba)
∂ba

ba

1− q̃pa(ba)
,

(84)

where the second line is resulted directly from Equation (83). Now, to complete the proof, we need to
show that the second-order condition (SOC) is also satisfied. We start by writing a useful property in the
relationship between the first and second derivative of the allocation function:

∂q̃pa(ba)
∂ba

∂2q̃pa(ba)
∂b2a

=

zaζa
(baza+ζa)2

−2z2aζa
(baza+ζa)3

=
(baza + ζa)

2za
= − ba

2q̃pa(ba)
(85)
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We can now write the second derivative of the expected utility function as follows:

∂2upa(ba;xa)

∂b2a
= ma

(
(xa − εpa(ba))

∂2q̃pa(ba)

∂b2a
− ∂εpa(ba)

∂ba

∂q̃pa(ba)

∂ba
− ∂εpa(ba)

∂ba

∂q̃pa(ba)

∂ba
− ∂2εpa(ba)

∂b2a
q̃pa(ba)

)
= ma

(
∂εpa(ba)
∂ba

q̃pa(ba)

∂q̃pa(ba)
∂ba

∂2q̃pa(ba)

∂b2a
− 2

∂εpa(ba)

∂ba

∂q̃pa(ba)

∂ba
− ∂2εpa(ba)

∂b2a
q̃pa(ba)

)

= ma

∂εpa(ba)
∂ba

q̃pa(ba)

 ∂2q̃pa(ba)
∂b2a

∂q̃pa(ba)
∂ba

− 2
π′a(ba)

πa(ba)

− ∂2εpa(ba)

∂b2a
πa(ba)


= ma

(
∂εpa(ba)

∂ba
q̃pa(ba)

(
2πa(ba)

ba
− 2

1− πa(ba)
ba

)
− ∂2εpa(ba)

∂b2a
πa(ba)

)
= ma

(
− 2

ba

∂εpa(ba)

∂ba
q̃pa(ba)−

∂2εpa(ba)

∂b2a
πa(ba)

)
= maq̃

p
a(ba)

(
− 2

ba

∂εpa(ba)

∂ba
− ∂2εpa(ba)

∂b2a

)
(86)

In the equation above, we know that both ma and q̃pa(ba) are positive, so it is sufficient to show that
− 2
ba

∂εpa(ba)
∂ba

− ∂2εpa(ba)
∂b2a

≤ 0, which is direct result of the condition in Lemma 6, i.e., b2 ∂ε
p
a(b)
∂b is increasing in

the local neighbourhood around ba. Thus, the SOC is satisfied and this completes the proof.

Proof of Lemma 7. The proof is straighforward for this lemma. First, we know that the advertiser has
participated in the auction. Therefore, we know her click valuation was above the reserve price. That is:

b0 ≤ xa (87)

On the other hand, we know that her equilibrium bid is an upper bound for what would satisfy her FOC. Thus,
we can use the FOC from Lemma 6 and write:

xa ≤ εpa(b0) +
b0
∂εpa(b)
∂b |b=b0

1− q̃a(b0)
(88)

x


	Introduction
	Related Literature
	Optimal Auctions
	Auction Environment and Assumptions
	Warm-Up Case: Optimal Static Auction
	Allocation Rule
	Payments

	Optimal Dynamic Auction
	Allocation Rule
	Payments


	Empirical Strategy
	Setting
	Auction Mechanism
	Advertisers' Decisions

	Data
	Summary Statistics

	Estimation of Auction
	Advertisers' Model
	Assumptions and Identification
	Estimation Method

	Results
	Estimated Distribution of Click Valuations
	On the Regularity of the Distribution of Click Valuations


	Counterfactual Evaluation of Optimal Auctions
	Solution Concept for the Optimal Static Auction
	Solution Concept for the Optimal Dynamic Auction
	Evaluation

	Results
	Gains from the Optimal Dynamic Auction
	Distribution of Advertisers' Surplus

	Conclusion
	Appendices
	Proofs

